Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 Dec 1;87(3):652–662. doi: 10.1083/jcb.87.3.652

Motile statocyst cilia transmit rather than directly transduce mechanical stimuli

PMCID: PMC2110788  PMID: 7462319

Abstract

We have investigated the role of motile cilia in mechanotransduction by statocysts of the nudibranch mollusk Hermissenda crassicornis. Movement of the cilia that experience the weight of statoconia causes increased variance of voltage noise and membrane depolarization of the statocyst hair cell. Two complementary approaches were used to immobilize the cilia. Vanadate anion was iontophoretically injected into hair cells. This reversible inhibitor of vibratile form and to assume a more classic, pliable beat pattern. Voltage noise decreased as the cilia slowed and bent more extremely, nearly disappearing as motility was lost. When the intracellular vanadate concentration approached 10(-5) M, the cilia were arrested in an effective stroke against the cell membrane. The cell no longer depolarized upon gravitational or local mechanical stimulation. Rapid reversal of ciliary inhibition by norepinephrine or slow reversal with time restored both the voltage noise and depolarization response. Cilia were rendered rigid and upright by covalent cross-linkage of their membrane "sleeve" to the 9 + 2 axoneme, using the photoactivated, lipophilic, bifunctional agent 4,4'-dithiobisphenyl azide. In the initial stages of cross-linkage, the cilia remained vibratile but slowed and moved through wider excursions. Voltage noise decreased in frequency but increased in amplitude. When the cilia were fully arrested, voltage noise was minimized while the resting potential and membrane resistance remained essentially constant. Mechanical stimulation of the rigid cilia, normal to the cell membrane, elicited a generator potential of the same amplitude but of greater duration than before treatment. Because cilia that are partially arrested by vanadate undergo increased bending, although the hair cell shows decreased noise, neither the axoneme nor the ciliary membrane proper would appear to be sites of direct transduction. In cells with beating but stiffened cilia, however, the voltage noise becomes amplified, implying an increased efficiency of transduction. We suggest that active but rigid flexure of the axoneme is involved in amplification and continuous signal detection. The basal insertion area is the most likely transduction site, being the terminal leverage point through which force is applied to the plasma membrane via the flexing ciliary shaft.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alkon D. L., Bak A. Hair cell generator potentials. J Gen Physiol. 1973 May;61(5):619–637. doi: 10.1085/jgp.61.5.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alkon D. L., Grossman Y. Evidence for nonsynaptic neuronal interaction. J Neurophysiol. 1978 May;41(3):640–653. doi: 10.1152/jn.1978.41.3.640. [DOI] [PubMed] [Google Scholar]
  3. Alkon D. L. Responses of hair cells to statocyst rotation. J Gen Physiol. 1975 Oct;66(4):507–530. doi: 10.1085/jgp.66.4.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Atema J. Microtube theory of sensory transduction. J Theor Biol. 1973 Jan;38(1):181–190. doi: 10.1016/0022-5193(73)90233-6. [DOI] [PubMed] [Google Scholar]
  5. Blum J. J. Existence of a breaking point in cilia and flagella. J Theor Biol. 1971 Nov;33(2):257–263. doi: 10.1016/0022-5193(71)90065-8. [DOI] [PubMed] [Google Scholar]
  6. Cantley L. C., Jr, Cantley L. G., Josephson L. A characterization of vanadate interactions with the (Na,K)-ATPase. Mechanistic and regulatory implications. J Biol Chem. 1978 Oct 25;253(20):7361–7368. [PubMed] [Google Scholar]
  7. DeFelice L. J., Alkon D. L. Voltage noise from hair cells during mechanical stimulation. Nature. 1977 Oct 13;269(5629):613–615. doi: 10.1038/269613a0. [DOI] [PubMed] [Google Scholar]
  8. Dentler W. L., Pratt M. M., Stephens R. E. Microtubule-membrane interactions in cilia. II. Photochemical cross-linking of bridge structures and the identification of a membrane-associated dynein-like ATPase. J Cell Biol. 1980 Feb;84(2):381–403. doi: 10.1083/jcb.84.2.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dunlap K. Localization of calcium channels in Paramecium caudatum. J Physiol. 1977 Sep;271(1):119–133. doi: 10.1113/jphysiol.1977.sp011993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dute R., Kung C. Ultrastructure of the proximal region of somatic cilia in Paramecium tetraurelia. J Cell Biol. 1978 Aug;78(2):451–464. doi: 10.1083/jcb.78.2.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. GRAY E. G., PUMPHREY R. J. Ultrastructure of the insect ear. Nature. 1958 Mar 1;181(4609):618–618. doi: 10.1038/181618a0. [DOI] [PubMed] [Google Scholar]
  12. Gallin E. K., Wiederhold M. L. Response of Aplysia statocyst receptor cells to physiologic stimulation. J Physiol. 1977 Mar;266(1):123–137. doi: 10.1113/jphysiol.1977.sp011759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gilula N. B., Satir P. The ciliary necklace. A ciliary membrane specialization. J Cell Biol. 1972 May;53(2):494–509. doi: 10.1083/jcb.53.2.494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goodno C. C. Inhibition of myosin ATPase by vanadate ion. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2620–2624. doi: 10.1073/pnas.76.6.2620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Grossman Y., Alkon D. L., Heldman E. A common origin of voltage noise and generator potentials in statocyst hair cells. J Gen Physiol. 1979 Jan;73(1):23–48. doi: 10.1085/jgp.73.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hudspeth A. J., Jacobs R. Stereocilia mediate transduction in vertebrate hair cells (auditory system/cilium/vestibular system). Proc Natl Acad Sci U S A. 1979 Mar;76(3):1506–1509. doi: 10.1073/pnas.76.3.1506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Machemer H., Ogura A. Ionic conductances of membranes in ciliated and deciliated Paramecium. J Physiol. 1979 Nov;296:49–60. doi: 10.1113/jphysiol.1979.sp012990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mikkelsen R. B., Wallach D. F. Photoactivated cross-linking of proteins within the erythrocyte membrane core. J Biol Chem. 1976 Dec 10;251(23):7413–7416. [PubMed] [Google Scholar]
  19. Moran D. T., Chapman K. M., Ellis R. A. The fine structure of cockroach campaniform sensilla. J Cell Biol. 1971 Jan;48(1):155–173. doi: 10.1083/jcb.48.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Moran D. T., Varela F. G. Microtubules and sensory transduction. Proc Natl Acad Sci U S A. 1971 Apr;68(4):757–760. doi: 10.1073/pnas.68.4.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Moran D. T., Varela F. J., Rowley J. C., 3rd Evidence for active role of cilia in sensory transduction. Proc Natl Acad Sci U S A. 1977 Feb;74(2):793–797. doi: 10.1073/pnas.74.2.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. O'Neal S. G., Rhoads D. B., Racker E. Vanadate inhibition of sarcoplasmic reticulum Ca2+-ATPase and other ATPases. Biochem Biophys Res Commun. 1979 Aug 13;89(3):845–850. doi: 10.1016/0006-291x(79)91855-2. [DOI] [PubMed] [Google Scholar]
  23. Ogura A., Takahashi K. Artificial deciliation causes loss of calcium-dependent responses in Paramecium. Nature. 1976 Nov 11;264(5582):170–172. doi: 10.1038/264170a0. [DOI] [PubMed] [Google Scholar]
  24. Okuno M. Inhibition and relaxation of sea urchin sperm flagella by vanadate. J Cell Biol. 1980 Jun;85(3):712–725. doi: 10.1083/jcb.85.3.712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sale W. S., Gibbons I. R. Study of the mechanism of vanadate inhibition of the dynein cross-bridge cycle in sea urchin sperm flagella. J Cell Biol. 1979 Jul;82(1):291–298. doi: 10.1083/jcb.82.1.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Satir P. Ionophore-mediated calcium entry induces mussel gill ciliary arrest. Science. 1975 Nov 7;190(4214):586–588. doi: 10.1126/science.1103290. [DOI] [PubMed] [Google Scholar]
  27. Wiederhold M. L. Membrane voltage noise associated with ciliary beating in the Aplysia statocyst. Brain Res. 1978 Nov 10;156(2):369–374. doi: 10.1016/0006-8993(78)90521-8. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES