Abstract
Sea urchin eggs and oocytes at the germinal vesicle stage were fixed at various times after insemination, and thin sections were examined. Actin filaments can first be found in the cortical cytoplasm 1 min after insemination, and by 2 min enormous numbers of filaments are present. At these early stages, the filaments are only occasionally organized into bundles, but one end of many filaments contacts the plasma membrane. By 3 min, and even more dramatically by 5 min after insemination, the filaments become progressively more often found in bundles that lie parallel to the long axis of the microvilli and the fertilization cones. By 7 min, the bundles of filaments in the cone are maximally pronounced, with virtually all the filaments lying parallel to one another. Decoration of the filaments with subfragment 1 of myosin shows that, in both the microvilli and the cones, the filaments are unidirectionally polarized with the arrowheads pointing towards the cell center. The efflux of H+ from the eggs was measured as a function of time after insemination. The rapid phase of H+ efflux occurs at the same time as actin polymerization. From these results it appears that the formation of bundles of actin filaments in microvilli and in cones is a two-step process, involving actin polymerization to form filaments, randomly oriented but in most cases having one end in contact with the plasma membrane, followed by the zippering together of the filaments by macromolecular bridges.
Full Text
The Full Text of this article is available as a PDF (2.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Begg D. A., Rebhun L. I. pH regulates the polymerization of actin in the sea urchin egg cortex. J Cell Biol. 1979 Oct;83(1):241–248. doi: 10.1083/jcb.83.1.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Begg D. A., Rodewald R., Rebhun L. I. The visualization of actin filament polarity in thin sections. Evidence for the uniform polarity of membrane-associated filaments. J Cell Biol. 1978 Dec;79(3):846–852. doi: 10.1083/jcb.79.3.846. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burgess D. R., Schroeder T. E. Polarized bundles of actin filaments within microvilli of fertilized sea urchin eggs. J Cell Biol. 1977 Sep;74(3):1032–1037. doi: 10.1083/jcb.74.3.1032. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edds K. T. Dynamic aspects of filopodial formation by reorganization of microfilaments. J Cell Biol. 1977 May;73(2):479–491. doi: 10.1083/jcb.73.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson J. D., Epel D. Intracellular pH and activation of sea urchin eggs after fertilisation. Nature. 1976 Aug 19;262(5570):661–664. doi: 10.1038/262661a0. [DOI] [PubMed] [Google Scholar]
- Longo F. J., Anderson E. The effects of nicotine on fertilization in the sea urchin, Arbacia punctulata. J Cell Biol. 1970 Aug;46(2):308–325. doi: 10.1083/jcb.46.2.308. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Longo F. J., Anderson E. The fine structure of pronuclear development and fusion in the sea urchin, Arbacia punctulata. J Cell Biol. 1968 Nov;39(2):339–368. doi: 10.1083/jcb.39.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Longo F. J. Insemination of immature sea urchin (Arbacia punctulata) eggs. Dev Biol. 1978 Feb;62(2):271–291. doi: 10.1016/0012-1606(78)90217-8. [DOI] [PubMed] [Google Scholar]
- Longo F. J. Organization of microfilaments in sea urchin (Arbacia punctulata) eggs at fertilization: effects of cytochalasin B. Dev Biol. 1980 Feb;74(2):422–433. doi: 10.1016/0012-1606(80)90443-1. [DOI] [PubMed] [Google Scholar]
- MEHL J. W., SWANN M. M. Acid and base production at fertilization in the sea urchin. Exp Cell Res. 1961 Jan;22:233–245. doi: 10.1016/0014-4827(61)90101-x. [DOI] [PubMed] [Google Scholar]
- Maupin-Szamier P., Pollard T. D. Actin filament destruction by osmium tetroxide. J Cell Biol. 1978 Jun;77(3):837–852. doi: 10.1083/jcb.77.3.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Otto J. J., Kane R. E., Bryan J. Formation of filopodia in coelomocytes: localization of fascin, a 58,000 dalton actin cross-linking protein. Cell. 1979 Jun;17(2):285–293. doi: 10.1016/0092-8674(79)90154-5. [DOI] [PubMed] [Google Scholar]
- Shen S. S., Steinhardt R. A. Direct measurement of intracellular pH during metabolic derepression of the sea urchin egg. Nature. 1978 Mar 16;272(5650):253–254. doi: 10.1038/272253a0. [DOI] [PubMed] [Google Scholar]
- Spudich A., Spudich J. A. Actin in triton-treated cortical preparations of unfertilized and fertilized sea urchin eggs. J Cell Biol. 1979 Jul;82(1):212–226. doi: 10.1083/jcb.82.1.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spudich J. A., Amos L. A. Structure of actin filament bundles from microvilli of sea urchin eggs. J Mol Biol. 1979 Apr 5;129(2):319–331. doi: 10.1016/0022-2836(79)90285-7. [DOI] [PubMed] [Google Scholar]
- Tilney L. G., Kiehart D. P., Sardet C., Tilney M. Polymerization of actin. IV. Role of Ca++ and H+ in the assembly of actin and in membrane fusion in the acrosomal reaction of echinoderm sperm. J Cell Biol. 1978 May;77(2):536–550. doi: 10.1083/jcb.77.2.536. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tilney L. G. The polymerization of actin. III. Aggregates of nonfilamentous actin and its associated proteins: a storage form of actin. J Cell Biol. 1976 Apr;69(1):73–89. doi: 10.1083/jcb.69.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Veron M., Foerder C., Eddy E. M., Shapiro Sequential biochemical and morphological events during assembly of the fertilization membrane of the sea urchin. Cell. 1977 Feb;10(2):321–328. doi: 10.1016/0092-8674(77)90226-4. [DOI] [PubMed] [Google Scholar]