Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 Dec 1;87(3):755–763. doi: 10.1083/jcb.87.3.755

Isolation and characterization of Chinese hamster ovary cell variants defective in adhesion to fibronectin-coated collagen

PMCID: PMC2110797  PMID: 7193214

Abstract

Variant clones of Chinese hamster ovary (CHO) cells were selected for reduced adhesion to serum-coated tissue culture plates. These clones also displayed reduced adhesion to substrata composed of collagen layers coated with bovine serum or with fibronectin (cold-insoluble globulin). Wild-type (WT) and adhesion variant (ADv) cells grew at comparable rates in suspension culture, but the adhesion variants could not be grown in monolayer culture because of their inability to attach to the substratum. The adhesion deficit in these cells was not corrected by raising the concentration of divalent cations or of serum to levels 10-fold greater than those normally utilized in cell culture. However, both WT and ADv clones could adhere, spread, and attain a normal CHO morphology on substrata coated with concanavalin A or poly-L- lysine. In addition, the adhesion variants could attach to substrata coated with "footpad" material (substratum-attached material) derived from monolayers of human diploid fibroblasts or WT CHO cells. These observations suggest that the variant clones may have a cell surface defect that prevents them from utilizing exogeneous fibronectin as an adhesion-promoting ligand; however the variants seem to have normal cytoskeletal and metabolic capacities that allow them to attach and spread on substrata coated with alternative ligands. These variants should be extremely useful in studying the molecular basis of cell adhesion.

Full Text

The Full Text of this article is available as a PDF (940.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BORNSTEIN M. B. Reconstituted rattail collagen used as substrate for tissue cultures on coverslips in Maximow slides and roller tubes. Lab Invest. 1958 Mar-Apr;7(2):134–137. [PubMed] [Google Scholar]
  2. Balian G., Click E. M., Crouch E., Davidson J. M., Bornstein P. Isolation of a collagen-binding fragment from fibronectin and cold-insoluble globulin. J Biol Chem. 1979 Mar 10;254(5):1429–1432. [PubMed] [Google Scholar]
  3. Culp L. A. Substrate-attached glycoproteins mediating adhesion of normal and virus-transformed mouse fibroblasts. J Cell Biol. 1974 Oct;63(1):71–83. doi: 10.1083/jcb.63.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Engvall E., Ruoslahti E. Binding of soluble form of fibroblast surface protein, fibronectin, to collagen. Int J Cancer. 1977 Jul 15;20(1):1–5. doi: 10.1002/ijc.2910200102. [DOI] [PubMed] [Google Scholar]
  5. Grinnell F. Cellular adhesiveness and extracellular substrata. Int Rev Cytol. 1978;53:65–144. doi: 10.1016/s0074-7696(08)62241-x. [DOI] [PubMed] [Google Scholar]
  6. Grinnell F., Minter D. Attachment and spreading of baby hamster kidney cells to collagen substrata: effects of cold-insoluble globulin. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4408–4412. doi: 10.1073/pnas.75.9.4408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grinnell F., Tobleman M. Q., Hackenbrock C. R. Initial attachment of baby hamster kidney cells to an epoxy substratum. Ultrastructural analysis. J Cell Biol. 1976 Sep;70(3):707–713. doi: 10.1083/jcb.70.3.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hynes R. O., Destree A. T., Mautner V. Spatial organization at the cell surface. Prog Clin Biol Res. 1976;9:189–201. [PubMed] [Google Scholar]
  9. Juliano R. L., Behar-Bannelier M. Surface polypeptides of the cultured Chinese hamster ovary cell. Biochemistry. 1975 Aug 26;14(17):3816–3825. doi: 10.1021/bi00688a014. [DOI] [PubMed] [Google Scholar]
  10. Juliano R. L., Gagalang E. The adhension of Chinese hamster cells. I. Effects of temperature, metabolic inhibitors and proteolytic dissection of cell surface macromolecules. J Cell Physiol. 1977 Aug;92(2):209–220. doi: 10.1002/jcp.1040920209. [DOI] [PubMed] [Google Scholar]
  11. Juliano R. L., Gagalang E. The effect of membrane-fluidizing agents on the adhesion of CHO cells. J Cell Physiol. 1979 Mar;98(3):483–489. doi: 10.1002/jcp.1040980307. [DOI] [PubMed] [Google Scholar]
  12. Klebe R. J., Hall J. R., Rosenberger P., Dickey W. D. Cell attachment to collagen: the ionic requirements. Exp Cell Res. 1977 Dec;110(2):419–425. doi: 10.1016/0014-4827(77)90308-1. [DOI] [PubMed] [Google Scholar]
  13. Klebe R. J. Isolation of a collagen-dependent cell attachment factor. Nature. 1974 Jul 19;250(463):248–251. doi: 10.1038/250248a0. [DOI] [PubMed] [Google Scholar]
  14. Klebe R. J., Rosenberger P. G., Naylor S. L., Burns R. L., Novak R., Kleinman H. Cell attachment to collagen. Isolation of a cell attachment mutant. Exp Cell Res. 1977 Jan;104(1):119–125. doi: 10.1016/0014-4827(77)90074-x. [DOI] [PubMed] [Google Scholar]
  15. Mautner V., Hynes R. O. Surface distribution of LETS protein in relation to the cytoskeleton of normal and transformed cells. J Cell Biol. 1977 Dec;75(3):743–768. doi: 10.1083/jcb.75.3.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McKeehan W. L., Ham R. G. Stimulation of clonal growth of normal fibroblasts with substrata coated with basic polymers. J Cell Biol. 1976 Dec;71(3):727–734. doi: 10.1083/jcb.71.3.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nath K., Srere P. A. Effects of temperature, metabolic and cytoskeletal inhibitors on the rate of BHK cell adhesion to polystyrene. J Cell Physiol. 1977 Jul;92(1):33–42. doi: 10.1002/jcp.1040920105. [DOI] [PubMed] [Google Scholar]
  18. Nozawa R. T., Guerrant R. L. Fibrin adherent CHO cell behavior in response to chelators and enterotoxin. Exp Cell Res. 1977 Jun;107(1):25–30. doi: 10.1016/0014-4827(77)90381-0. [DOI] [PubMed] [Google Scholar]
  19. Pearlstein E. Plasma membrane glycoprotein which mediates adhesion of fibroblasts to collagen. Nature. 1976 Aug 5;262(5568):497–500. doi: 10.1038/262497a0. [DOI] [PubMed] [Google Scholar]
  20. Pena S. D., Hughes R. C. Fibronectin-plasma membrane interactions in the adhesion and spreading of hamster fibroblasts. Nature. 1978 Nov 2;276(5683):80–83. doi: 10.1038/276080a0. [DOI] [PubMed] [Google Scholar]
  21. Perkins M. E., Ji T. H., Hynes R. O. Cross-linking of fibronectin to sulfated proteoglycans at the cell surface. Cell. 1979 Apr;16(4):941–952. doi: 10.1016/0092-8674(79)90109-0. [DOI] [PubMed] [Google Scholar]
  22. Pouysségur J. M., Pastan I. Mutants of Balb/c 3T3 fibroblasts defective in adhesiveness to substratum: evidence for alteration in cell surface proteins. Proc Natl Acad Sci U S A. 1976 Feb;73(2):544–548. doi: 10.1073/pnas.73.2.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pouysségur J., Pastan I. Mutants of mouse fibroblasts altered in the synthesis of cell surface glycoproteins. Preliminary evidence for a defect in the acetylation of glucosamine 6-phosphate. J Biol Chem. 1977 Mar 10;252(5):1639–1646. [PubMed] [Google Scholar]
  24. Rollins B. J., Culp L. A. Glycosaminoglycans in the substrate adhesion sites of normal and virus-transformed murine cells. Biochemistry. 1979 Jan 9;18(1):141–148. doi: 10.1021/bi00568a022. [DOI] [PubMed] [Google Scholar]
  25. Roth S. A., Weston J. A. The measurement of intercellular adhesion. Proc Natl Acad Sci U S A. 1967 Sep;58(3):974–980. doi: 10.1073/pnas.58.3.974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ruoslahti E., Hayman E. G. Two active sites with different characteristics in fibronectin. FEBS Lett. 1979 Jan 15;97(2):221–224. doi: 10.1016/0014-5793(79)80088-5. [DOI] [PubMed] [Google Scholar]
  27. Saunders M., Sweetman L., Robinson B., Roth K., Cohn R., Gravel R. A. Biotin-response organicaciduria. Multiple carboxylase defects and complementation studies with propionicacidemia in cultured fibroblasts. J Clin Invest. 1979 Dec;64(6):1695–1702. doi: 10.1172/JCI109632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stathakis N. E., Mosesson M. W. Interactions among heparin, cold-insoluble globulin, and fibrinogen in formation of the heparin-precipitable fraction of plasma. J Clin Invest. 1977 Oct;60(4):855–865. doi: 10.1172/JCI108840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sträuli P., Weiss L. Cell locomation and tumor penetration. Report on a workshop of the EORTC cell surface project group. Eur J Cancer. 1977 Jan;13(1):1–12. doi: 10.1016/0014-2964(77)90222-5. [DOI] [PubMed] [Google Scholar]
  30. Vaheri A., Mosher D. F. High molecular weight, cell surface-associated glycoprotein (fibronectin) lost in malignant transformation. Biochim Biophys Acta. 1978 Sep 18;516(1):1–25. doi: 10.1016/0304-419x(78)90002-1. [DOI] [PubMed] [Google Scholar]
  31. Walther B. T., Ohman R., Roseman S. A quantitative assay for intercellular adhesion. Proc Natl Acad Sci U S A. 1973 May;70(5):1569–1573. doi: 10.1073/pnas.70.5.1569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wylie D. E., Damsky C. H., Buck C. A. Studies on the function of cell surface glycoproteins. I. Use of antisera to surface membranes in the identification of membrane components relevant to cell-substrate adhesion. J Cell Biol. 1979 Feb;80(2):385–402. doi: 10.1083/jcb.80.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yamada K. M., Kennedy D. W. Fibroblast cellular and plasma fibronectins are similar but not identical. J Cell Biol. 1979 Feb;80(2):492–498. doi: 10.1083/jcb.80.2.492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yamada K. M., Olden K. Fibronectins--adhesive glycoproteins of cell surface and blood. Nature. 1978 Sep 21;275(5677):179–184. doi: 10.1038/275179a0. [DOI] [PubMed] [Google Scholar]
  35. Yamada K. M., Olden K., Pastan I. Transformation-sensitive cell surface protein: isolation, characterization, and role in cellular morphology and adhesion. Ann N Y Acad Sci. 1978 Jun 20;312:256–277. doi: 10.1111/j.1749-6632.1978.tb16807.x. [DOI] [PubMed] [Google Scholar]
  36. Yamada K. M., Yamada S. S., Pastan I. Cell surface protein partially restores morphology, adhesiveness, and contact inhibition of movement to transformed fibroblasts. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1217–1221. doi: 10.1073/pnas.73.4.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES