Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1974 Nov 1;63(2):505–514. doi: 10.1083/jcb.63.2.505

ACQUISITION OF CHICK CYTOSOL THYMIDINE KINASE ACTIVITY BY THYMIDINE KINASE-DEFICIENT MOUSE FIBROBLAST CELLS AFTER FUSION WITH CHICK ERYTHROCYTES

Saul Kit 1, Wai-Choi Leung 1, George Jorgensen 1, David Trkula 1, Del Rose Dubbs 1
PMCID: PMC2110944  PMID: 4371156

Abstract

Chick-mouse heterokaryons were obtained by UV-Sendai virus-induced fusion of chick erythrocytes with thymidine (dT) kinase-deficient mouse fibroblast [LM(TK-)] cells. Autoradiographic studies demonstrated that 1 day after fusion, [3H]dT was incorporated into both red blood cell and LM(TK-) nuclei of 23% of the heterokaryons. Self-fused LM(TK-) cells failed to incorporate [3H]dT into nuclear DNA. 15 clonal lines of chick-mouse somatic cell hybrids [LM(TK-)/CRB] were isolated from the heterokaryons by cultivating them in selective hypoxanthine-aminopterin-thymidine-glycine medium. LM(TK-) and chick erythrocytes exhibited little, if any, cytosol dT kinase activity. In contrast, all 15 LM(TK-)/CRB lines contained levels of cytosol dT kinase activity comparable to that found in chick embryo cells. Disk polyacrylamide gel electrophoresis and isoelectric focusing analyses demonstrated that the LM(TK-)/CRB cells contained chick cytosol, but not mouse cytosol dT kinase. The LM(TK-)/CRB cells also contained mouse mitochondrial, but not chick mitochondrial dT kinase. Hence, the clonal lines were somatic cell hybrids and not LM(TK-) cell revertants. The experiments demonstrate that chick erythrocyte cytosol dT kinase can be activated in heterokaryons and in hybrid cells, most likely as a result of functions supplied by mouse fibroblast cells.

Full Text

The Full Text of this article is available as a PDF (663.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Attardi G., Parnas H., Attardi B. Pattern of RNA synthesis in duck erythrocytes in relationship to the stage of cell differentiation. Exp Cell Res. 1970 Sep;62(1):11–31. doi: 10.1016/0014-4827(79)90505-6. [DOI] [PubMed] [Google Scholar]
  2. Bakay B., Croce C. M., Koprowski H., Nyhan W. L. Restoration of hypoxanthine phosphoribosyl transferase activity in mouse 1R cells after fusion with chick-embryo fibroblasts. Proc Natl Acad Sci U S A. 1973 Jul;70(7):1998–2002. doi: 10.1073/pnas.70.7.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bolund L., Ringertz N. R., Harris H. Changes in the cytochemical properties of erythrocyte nuclei reactivated by cell fusion. J Cell Sci. 1969 Jan;4(1):71–87. doi: 10.1242/jcs.4.1.71. [DOI] [PubMed] [Google Scholar]
  4. Boyd Y. L., Harris H. Correction of genetic defects in mammalian cells by the input of small amounts of foreign genetic material. J Cell Sci. 1973 Nov;13(3):841–861. doi: 10.1242/jcs.13.3.841. [DOI] [PubMed] [Google Scholar]
  5. Cook P. R. Species specificity of an enzyme determined by an erythrocyte nucleus in an interspecific hybrid cell. J Cell Sci. 1970 Jul;7(1):1–3. doi: 10.1242/jcs.7.1.1. [DOI] [PubMed] [Google Scholar]
  6. DUBBS D. R., KIT S. ISOLATION AND PROPERTIES OF VACCINIA MUTANTS DEFICIENT IN THYMIDINE KINASE-INDUCING ACTIVITY. Virology. 1964 Feb;22:214–225. doi: 10.1016/0042-6822(64)90006-6. [DOI] [PubMed] [Google Scholar]
  7. Davidson R. L., Adelstein S. J., Oxman M. N. Herpes simplex virus as a source of thymidine kinase for thymidine kinase-deficient mouse cells: suppression and reactivation of the viral enzyme. Proc Natl Acad Sci U S A. 1973 Jul;70(7):1912–1916. doi: 10.1073/pnas.70.7.1912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dubbs D. R., Kit S. Isolation of defective lysogens from Simian virus 40-transformed mouse kidney cultures. J Virol. 1968 Nov;2(11):1272–1282. doi: 10.1128/jvi.2.11.1272-1282.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Harris H., Cook P. R. Synthesis of an enzyme determined by an erythrocyte nucleus in a hybrid cell. J Cell Sci. 1969 Jul;5(1):121–133. doi: 10.1242/jcs.5.1.121. [DOI] [PubMed] [Google Scholar]
  10. KIT S., DUBBS D. R., PIEKARSKI L. J., HSU T. C. DELETION OF THYMIDINE KINASE ACTIVITY FROM L CELLS RESISTANT TO BROMODEOXYURIDINE. Exp Cell Res. 1963 Aug;31:297–312. doi: 10.1016/0014-4827(63)90007-7. [DOI] [PubMed] [Google Scholar]
  11. Kao F. T. Identification of chick chromosomes in cell hybrids formed between chick erythrocytes and adenine-requiring mutants of Chinese hamster cells. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2893–2898. doi: 10.1073/pnas.70.10.2893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kit S., Kaplan L. A., Leung W. C., Trkula D. Mitochondrial thymidine kinase of bromodeoxyuridine-resistant, kinase-deficient HeLa(BU25) cells. Biochem Biophys Res Commun. 1972 Dec 18;49(6):1561–1567. doi: 10.1016/0006-291x(72)90519-0. [DOI] [PubMed] [Google Scholar]
  13. Kit S., Leung W. C. Submitochondrial localization and characteristics of thymidine kinase molecular forms in parental and kinase-deficient HeLa cells. Biochem Genet. 1974 Mar;11(3):231–247. doi: 10.1007/BF00486058. [DOI] [PubMed] [Google Scholar]
  14. Kit S., Leung W. C., Trkula D. Distinctive properties of mitochondrial thymidine(dT)kinase from bromodeoxyuridine(dBU)-resistant mouse lines. Biochem Biophys Res Commun. 1973 Sep 5;54(1):455–461. doi: 10.1016/0006-291x(73)90943-1. [DOI] [PubMed] [Google Scholar]
  15. Kit S., Leung W. C., Trkula D., Jorgensen G. Gel electrophoresis and isoelectric focusing of mitochondrial and viral-induced thymidine kinases. Int J Cancer. 1974 Feb 15;13(2):203–218. doi: 10.1002/ijc.2910130208. [DOI] [PubMed] [Google Scholar]
  16. Kit S., Leung W. C., Trkula D. Properties of mitochondrial thymidine kinases of parental and enzyme-deficient HeLa cells. Arch Biochem Biophys. 1973 Oct;158(2):503–513. doi: 10.1016/0003-9861(73)90542-0. [DOI] [PubMed] [Google Scholar]
  17. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  18. Munyon W., Buchsbaum R., Paoletti E., Mann J., Kraiselburd E., Davis D. Electrophoresis of thymidine kinase activity synthesized by cells transformed by herpes simplex virus. Virology. 1972 Sep;49(3):683–689. doi: 10.1016/0042-6822(72)90525-9. [DOI] [PubMed] [Google Scholar]
  19. Schwartz A. G., Cook P. R., Harris H. Correction of a genetic defect in a mammalian cell. Nat New Biol. 1971 Mar 3;230(1):5–8. doi: 10.1038/newbio230005a0. [DOI] [PubMed] [Google Scholar]
  20. Stafford M. A., Jones O. W. The presence of "fetal" thymidine kinase in human tumors. Biochim Biophys Acta. 1972 Aug 25;277(2):439–442. doi: 10.1016/0005-2787(72)90423-6. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES