Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1976 Apr 1;69(1):126–143. doi: 10.1083/jcb.69.1.126

Genetic analysis of membrane differentiation in Paramecium. Freeze- fracture study of the trichocyst cycle in wild-type and mutant strains

PMCID: PMC2110963  PMID: 1254639

Abstract

Using a series of mutants of Paramecium tetraurelia, we demonstrate, for the first time, changes in the internal structure of the cell membrane, as revealed by freeze-fracture, that correspond to specific single gene mutations. On the plasma membrane of Paramecium circular arrays of particles mark the sites of attachment of the tips of the intracellular secretory organelles-trichocysts. In wild-type paramecia, where attached trichocysts can be expelled by exocytosis under various stimuli, the plasma membrane array is composed of a double outer ring of particles (300 nm in diameter) and inside the ring a central rosette (fusion rosette) of particles (76 nm in diameter). Mutant nd9, characterized by a thermosensitive ability to discharge trichocysts, shows the same organization in cells grown at the permissive temperature (18 degrees C), while in cells grown at the nonpermissive temperature (27 degrees C) the rosette is missing. In mutant tam 8, characterized by normal but unattached trichocysts, and in mutant tl, completely devoid of trichocysts, no rosette is formed and the outer rings always show a modified configuration called "parentheses", also found in wild-type and in nd9 (18 degrees C) cells. From this comparison between wild type and mutants, we conclude: (a) that the formation of parentheses is a primary differentiation of the plasma membrane, independent of the presence of trichocysts, while the secondary transformation of parentheses into circular arrays and the formation of the rosette are triggered by interaction between trichocysts and plasma membranes; and (b) that the formation of the rosette is a prerequisite for trichocyst exocytosis.

Full Text

The Full Text of this article is available as a PDF (8.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahkong Q. F., Fisher D., Tampion W., Lucy J. A. Mechanisms of cell fusion. Nature. 1975 Jan 17;253(5488):194–195. doi: 10.1038/253194a0. [DOI] [PubMed] [Google Scholar]
  2. Allison A. C., Davies P. Mechanisms of endocytosis and exocytosis. Symp Soc Exp Biol. 1974;(28):419–446. [PubMed] [Google Scholar]
  3. Bannister L. H. The structure of trichocysts in Paramecium caudatum. J Cell Sci. 1972 Nov;11(3):899–929. doi: 10.1242/jcs.11.3.899. [DOI] [PubMed] [Google Scholar]
  4. Branton D. Fracture faces of frozen membranes. Proc Natl Acad Sci U S A. 1966 May;55(5):1048–1056. doi: 10.1073/pnas.55.5.1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Deamer D. W., Branton D. Fracture planes in an ice-bilayer model membrane system. Science. 1967 Nov 3;158(3801):655–657. doi: 10.1126/science.158.3801.655. [DOI] [PubMed] [Google Scholar]
  6. Elgsaeter A., Branton D. Intramembrane particle aggregation in erythrocyte ghosts. I. The effects of protein removal. J Cell Biol. 1974 Dec;63(3):1018–1036. doi: 10.1083/jcb.63.3.1018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lefort-Tran M., Cohen-Bazire G., Pouphile M. Les membranes photosynthétiques des algues à biliproteines observées apres cryodécapage. J Ultrastruct Res. 1973 Aug;44(3):199–209. doi: 10.1016/s0022-5320(73)80056-5. [DOI] [PubMed] [Google Scholar]
  8. Plattner H., Miller F., Bachmann L. Membrane specializations in the form of regular membrane-to-membrane attachment sites in Paramecium. A correlated freeze-etching and ultrathin-sectioning analysis. J Cell Sci. 1973 Nov;13(3):687–719. doi: 10.1242/jcs.13.3.687. [DOI] [PubMed] [Google Scholar]
  9. Pollack S. Mutations affecting the trichocysts in Paramecium aurelia. I. Morphology and description of the mutants. J Protozool. 1974 May;21(2):352–362. doi: 10.1111/j.1550-7408.1974.tb03669.x. [DOI] [PubMed] [Google Scholar]
  10. Satir B., Schooley C., Satir P. Membrane fusion in a model system. Mucocyst secretion in Tetrahymena. J Cell Biol. 1973 Jan;56(1):153–176. doi: 10.1083/jcb.56.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Satir B. Ultrastructural aspects of membrane fusion. J Supramol Struct. 1974;2(5-6):529–537. doi: 10.1002/jss.400020503. [DOI] [PubMed] [Google Scholar]
  12. Satir P., Gilula N. B. The fine structure of membranes and intercellular communication in insects. Annu Rev Entomol. 1973;18:143–166. doi: 10.1146/annurev.en.18.010173.001043. [DOI] [PubMed] [Google Scholar]
  13. Segrest J. P., Gulik-Krzywicki T., Sardet C. Association of the membrane-penetrating polypeptide segment of the human erythrocyte MN-glycoprotein with phospholipid bilayers. I. Formation of freeze-etch intramembranous particles. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3294–3298. doi: 10.1073/pnas.71.8.3294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Staehelin L. A. Structure and function of intercellular junctions. Int Rev Cytol. 1974;39:191–283. doi: 10.1016/s0074-7696(08)60940-7. [DOI] [PubMed] [Google Scholar]
  15. Steers E., Jr, Beisson J., Marchesi V. T. A structural protein extracted from the trichocyst of Paramecium aurelia. Exp Cell Res. 1969 Oct;57(2):392–396. doi: 10.1016/0014-4827(69)90165-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES