Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1976 Apr 1;69(1):51–72. doi: 10.1083/jcb.69.1.51

The polymerization of actin: II. how nonfilamentous actin becomes nonrandomly distributed in sperm: evidence for the association of this actin with membranes

LG Tilney
PMCID: PMC2110972  PMID: 1254650

Abstract

At an early stage in spermiogenesis the acrosomal vacuole and other organelles including ribosomes are located at the basal end of the cell. From here actin must be transported to its future location at the anterior end of the cell. At no stage in the accumulation of actin in the periacrosomal region is the actin sequestered in a membrane-bounded compartment such as a vacuole or vesicle. Since filaments are not present in the periacrosomal region during the accumulation of the actin even though the fixation of these cells is sufficiently good to distinguish actin filaments in thin section, the actin must accumulate in the nonfilamentous state. The membranes in the periacrosomal region, specifically a portion of the nuclear envelope and the basal half of the acrosomal vacuole membrane, become specialized morphologically in advance of the accumulation of actin in this region. My working hypothesis is that the actin in combination with other substances binds to these specialized membranes and to itself and thus can accumulate in the periacrosmoal region by being trapped on these specialized membranes. Diffusion would then be sufficient to move these substances to this region. In support of this hypothesis are experiments in which I treated mature sperm with detergents, glycols, and hypotonic media, which solubilize or lift away the plasma membrane. The actin and its associated proteins remain attached to these specialized membranes. Thus actin can be nonrandomly distributed in cells in a nonfilamentous state presumably by its association with specialized membranes.

Full Text

The Full Text of this article is available as a PDF (8.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson W. A., Weissman A., Ellis R. A. Cytodifferentiation during spermiogenesis in Lumbricus terrestris. J Cell Biol. 1967 Jan;32(1):11–26. doi: 10.1083/jcb.32.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bergstrom B. H., Arnold J. M. Nonkinetochore association of chromatin and microtubules. A preliminary note. J Cell Biol. 1974 Sep;62(3):917–920. doi: 10.1083/jcb.62.3.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dan J. C. Morphogenetic aspects of acrosome formation and reaction. Adv Morphog. 1970;8:1–39. doi: 10.1016/b978-0-12-028608-9.50005-3. [DOI] [PubMed] [Google Scholar]
  4. Dan J. C., Sirakami A. Studies on the acrosome. X. Differentiation of the starfish acrosome. Dev Growth Differ. 1971 May;13(1):37–52. doi: 10.1111/j.1440-169x.1971.00037.x. [DOI] [PubMed] [Google Scholar]
  5. Gruenstein E., Rich A., Weihing R. R. Actin associated with membranes from 3T3 mouse fibroblast and HeLa cells. J Cell Biol. 1975 Jan;64(1):223–234. doi: 10.1083/jcb.64.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hagiwara Y., Dan J. C., Saito A. Studies on the acrosome. 8. The intact starfish acrosome. J Ultrastruct Res. 1967 Jun;18(5):551–561. doi: 10.1016/s0022-5320(67)80202-8. [DOI] [PubMed] [Google Scholar]
  7. Hatano S., Kondo H., Miki-Noumura T. Purification of sea urchin egg actin. Exp Cell Res. 1969 May;55(2):275–277. doi: 10.1016/0014-4827(69)90492-3. [DOI] [PubMed] [Google Scholar]
  8. Hatano S., Oosawa F. Isolation and characterization of plasmodium actin. Biochim Biophys Acta. 1966 Oct 31;127(2):488–498. doi: 10.1016/0304-4165(66)90402-8. [DOI] [PubMed] [Google Scholar]
  9. Ishikawa H., Bischoff R., Holtzer H. Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J Cell Biol. 1969 Nov;43(2):312–328. [PMC free article] [PubMed] [Google Scholar]
  10. Karnovsky M. J., Ryan G. B. Substructure of the glomerular slit diaphragm in freeze-fractured normal rat kidney. J Cell Biol. 1975 Apr;65(1):233–236. doi: 10.1083/jcb.65.1.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kessel R. G. An electron microscope study of spermiogenesis in the grasshopper with particular reference to the development of microtubular systems during differentiation. J Ultrastruct Res. 1967 Jun;18(5):677–694. doi: 10.1016/s0022-5320(67)80213-2. [DOI] [PubMed] [Google Scholar]
  12. Kessel R. G. The association between microtubules and nuclei during spermiogenesis in the dragonfly. J Ultrastruct Res. 1966 Oct;16(3):293–304. doi: 10.1016/s0022-5320(66)80064-3. [DOI] [PubMed] [Google Scholar]
  13. Longo F. J., Anderson E. Spermiogenesis in the surf clam Spisula solidissima with special reference to the formation of the acrosomal vesicle. J Ultrastruct Res. 1969 Jun;27(5):435–443. doi: 10.1016/s0022-5320(69)80042-0. [DOI] [PubMed] [Google Scholar]
  14. Perry M. M., John H. A., Thomas N. S. Actin-like filaments in the cleavage furrow of newt egg. Exp Cell Res. 1971 Mar;65(1):249–253. doi: 10.1016/s0014-4827(71)80075-7. [DOI] [PubMed] [Google Scholar]
  15. Pollard T. D., Weihing R. R. Actin and myosin and cell movement. CRC Crit Rev Biochem. 1974 Jan;2(1):1–65. doi: 10.3109/10409237409105443. [DOI] [PubMed] [Google Scholar]
  16. Roth L. E., Pihlaja D. J., Shigenaka Y. Microtubules in the heliozoan axopodium. I. The gradion hypothesis of allosterism in structural proteins. J Ultrastruct Res. 1970 Jan;30(1):7–37. doi: 10.1016/s0022-5320(70)90062-6. [DOI] [PubMed] [Google Scholar]
  17. Schroeder T. E. Actin in dividing cells: contractile ring filaments bind heavy meromyosin. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1688–1692. doi: 10.1073/pnas.70.6.1688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Silva P. P., Martínez-Palomo A., Gonzalez-Robles A. Membrane structure and surface coat of Entamoeba histolytica. Topochemistry and dynamics of the cell surface: cap formation and microexudate. J Cell Biol. 1975 Mar;64(3):538–550. doi: 10.1083/jcb.64.3.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Spudich J. A. Biochemical and structural studies of actomyosin-like proteins from non-muscle cells. II. Purification, properties, and membrane association of actin from amoebae of Dictyostelium discoideum. J Biol Chem. 1974 Sep 25;249(18):6013–6020. [PubMed] [Google Scholar]
  20. Stanley H. P., Bowman J. T., Romrell L. J., Reed S. C., Wilkinson R. F. Fine structure of normal spermatid differentiation in Drosophila melanogaster. J Ultrastruct Res. 1972 Dec;41(5):433–466. doi: 10.1016/s0022-5320(72)90049-4. [DOI] [PubMed] [Google Scholar]
  21. Tilney L. G. Actin filaments in the acrosomal reaction of Limulus sperm. Motion generated by alterations in the packing of the filaments. J Cell Biol. 1975 Feb;64(2):289–310. doi: 10.1083/jcb.64.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tilney L. G., Detmers P. Actin in erythrocyte ghosts and its association with spectrin. Evidence for a nonfilamentous form of these two molecules in situ. J Cell Biol. 1975 Sep;66(3):508–520. doi: 10.1083/jcb.66.3.508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tilney L. G., Hatano S., Ishikawa H., Mooseker M. S. The polymerization of actin: its role in the generation of the acrosomal process of certain echinoderm sperm. J Cell Biol. 1973 Oct;59(1):109–126. doi: 10.1083/jcb.59.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tilney L. G., Porter K. R. Studies on microtubules in Heliozoa. I. The fine structure of Actinosphaerium nucleofilum (Barrett), with particular reference to the axial rod structure. Protoplasma. 1965;60(4):317–344. doi: 10.1007/BF01247886. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES