Abstract
Whole blood serum is widely recognized as essential for the growth of diploid cells in culture. Dermal fibroblasts and arterial smooth muscle cells fail to proliferate in culture in the presence of serum derived from platelet-poor plasma. Platelet-poor plasma serum is capable of maintaining monkey arterial smooth muscle cells quiescent in culture at either low (1.5 X 10(3)) or high (2.0 X 10(4)) population densities. The proportion of cells traversing the cell cycle under these conditions was approximately 3 percent. Equal numbers of quiescent smooth muscle cells initiated DNA synthesis and cell division when treated with whole blood serum or with an equivalent quantity of platelet-poor plasma serum supplemented with a factor(s) derived from a supernate obtained after exposure of human platelets to purified thrombin in vitro. Exposure of quiescent cells to 5 percent whole blood serum or 5 percent platelet-poor plasma serum plus 5 μg/ml of crude platelet factor(s) preparations for 1 h stimulated as many cells to initiate DNA synthesis as did exposure for 24 hr, and was independent of the cell densities used in these experiments. Thus, one of the principal mitogens for fibroblasts and for arterial smooth muscle cells in culture present in all blood sera thus far examined appears to be derived from platelets. The system of diploid fibroblasts or smooth muscle cells grown in serum lacking platelet factor(s) permits one to use cells quiescent in the presence of optimal levels of serum and of the low molecular weight components of the defined medium for the study of growth control in culture. This system also permits the study of smooth muscle proliferation as it may relate to the proliferative response observed in atherogenesis in vivo.
Full Text
The Full Text of this article is available as a PDF (560.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balk S. D. Calcium as a regulator of the proliferation of normal, but not of transformed, chicken fibroblasts in a plasma-containing medium. Proc Natl Acad Sci U S A. 1971 Feb;68(2):271–275. doi: 10.1073/pnas.68.2.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baserga R., Rovera G., Farber J. Control of cellular proliferation in human diploid fibroblasts. In Vitro. 1971 Sep-Oct;7(2):80–87. doi: 10.1007/BF02628266. [DOI] [PubMed] [Google Scholar]
- Holley R. W., Kiernan J. A. Control of the initiation of DNA synthesis in 3T3 cells: low-molecular weight nutrients. Proc Natl Acad Sci U S A. 1974 Aug;71(8):2942–2945. doi: 10.1073/pnas.71.8.2942. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hollwy R. W., Kiernan J. A. Control of the initiation of DNA synthesis in 3T3 cells: serum factors. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2908–2911. doi: 10.1073/pnas.71.7.2908. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kohler N., Lipton A. Platelets as a source of fibroblast growth-promoting activity. Exp Cell Res. 1974 Aug;87(2):297–301. doi: 10.1016/0014-4827(74)90484-4. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Ross R. Connective tissue cells, cell proliferation and synthesis of extracellular matrix-a review. Philos Trans R Soc Lond B Biol Sci. 1975 Jul 17;271(912):247–259. doi: 10.1098/rstb.1975.0049. [DOI] [PubMed] [Google Scholar]
- Ross R., Glomset J. A. Atherosclerosis and the arterial smooth muscle cell: Proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science. 1973 Jun 29;180(4093):1332–1339. doi: 10.1126/science.180.4093.1332. [DOI] [PubMed] [Google Scholar]
- Ross R., Glomset J., Kariya B., Harker L. A platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1207–1210. doi: 10.1073/pnas.71.4.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ross R. The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers. J Cell Biol. 1971 Jul;50(1):172–186. doi: 10.1083/jcb.50.1.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shodell M., Rubin H. Studies on the nature of serum stimulation of proliferation in cell culture. In Vitro. 1970 Jul-Aug;6(1):66–74. doi: 10.1007/BF02616135. [DOI] [PubMed] [Google Scholar]
- Tangen O., Berman H. J., Marfey P. Gel filtration. A new technique for separation of blood platelets from plasma. Thromb Diath Haemorrh. 1971 Jun 30;25(2):268–278. [PubMed] [Google Scholar]
- Temin H. M. Stimulation by serum of multiplication of stationary chicken cells. J Cell Physiol. 1971 Oct;78(2):161–170. doi: 10.1002/jcp.1040780202. [DOI] [PubMed] [Google Scholar]
- Thomas W. A., Florentin R. A., Nam S. C., Reiner J. M., Lee K. T. Alterations in population dynamics of arterial smooth muscle cells during atherogenesis. I. Activation of interphase cells in cholesterol-fed swine prior to gross atherosclerosis demonstrated by "postpulse-salvage labeling". Exp Mol Pathol. 1971 Oct;15(2):245–267. doi: 10.1016/0014-4800(71)90103-1. [DOI] [PubMed] [Google Scholar]
- Todaro G. J., Lazar G. K., Green H. The initiation of cell division in a contact-inhibited mammalian cell line. J Cell Physiol. 1965 Dec;66(3):325–333. doi: 10.1002/jcp.1030660310. [DOI] [PubMed] [Google Scholar]
- Yoshikura H., Hirokawa Y. Induction of cell replication. Exp Cell Res. 1968 Oct;52(2):439–444. doi: 10.1016/0014-4827(68)90485-0. [DOI] [PubMed] [Google Scholar]