Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1977 Jan 1;72(1):11–25. doi: 10.1083/jcb.72.1.11

Plasma protein synthesis by isolated rat hepatocytes

PMCID: PMC2110987  PMID: 12183

Abstract

A system of preparation of rat hepatocytes with extended viability has been developed to study the role of hormones and other plasma components upon secretory protein synthesis. Hepatocytes maintained in minimal essential medium reduced the levels of all amino acids in the medium except the slowly catabolized amino acids leucine, isoleucine, and valine, which steadily increase as the result of catabolism of liver protein. Although the liver cells catabolize 10-15% of their own protein during a 20-h incubation, the cells continue to secrete protein in a linear fashion throughout the period. The effects of insulin, cortisol, and epinephrine on general protein synthesis, and specifically on fibrinogen and albumin synthesis, have been tested on cells from both normal rats and adrenalectomized rats. Cells from normal animals show preinduction of tyrosine amino transferase (TAT), having at the time of isolation a high level of enzyme which shows only an increase of approximately 60% upon incubation with cortisol. In contrast, cells from adrenalectomized animals initially have a low level of enzyme which increases fourfold over a period of 9 h. The effects of both epinephrine and cortisol on protein synthesis are also much larger in cells from adrenalectomized animals. After a delay of several hours, cortisol increases fibrinogen synthesis sharply, so that at the end of the 20-h incubation, cells treated with hormone have secreted nearly 2.5 times as much fibrinogen as control cells. The effect is specific; cortisol stimulates neither albumin secretion nor intracellular protein synthesis. The combination of cortisol and epinephrine strongly depresses albumin synthesis in both types of cells. Insulin enhances albumin and general protein synthesis but has little effect on fibrinogen synthesis.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amsterdam A., Jamieson J. D. Studies on dispersed pancreatic exocrine cells. I. Dissociation technique and morphologic characteristics of separated cells. J Cell Biol. 1974 Dec;63(3):1037–1056. doi: 10.1083/jcb.63.3.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Atencio A. C., Chao P. Y., Chen A. Y., Reeve E. B. Fibrinogen response to corticotropin preparations in rabbits. Am J Physiol. 1969 Apr;216(4):773–780. doi: 10.1152/ajplegacy.1969.216.4.773. [DOI] [PubMed] [Google Scholar]
  3. Berry M. N., Friend D. S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969 Dec;43(3):506–520. doi: 10.1083/jcb.43.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bocci V., Pacini A. Factors regulating plasma protein synthesis. II. Influence of fibrinogenolytic products on plasma fibrinogen concentration. Thromb Diath Haemorrh. 1973 Feb 28;29(1):63–75. [PubMed] [Google Scholar]
  5. Bouma H., 3rd, Fuller F. M. Partial chemical characterization of rat fibrinogen. J Biol Chem. 1975 Jun 25;250(12):4678–4683. [PubMed] [Google Scholar]
  6. Clark M. G., Kneer N. M., Bosch A. L., Lardy H. A. The fructose 1,6-diphosphatase-phosphofructokinase substrate cycle. A site of regulation of hepatic gluconeogenesis by glucagon. J Biol Chem. 1974 Sep 25;249(18):5695–5703. [PubMed] [Google Scholar]
  7. Crane L. J., Miller D. L. A solid-phase radioimmunoassay for fibrinogen. Anal Biochem. 1975 Mar;64(1):60–67. doi: 10.1016/0003-2697(75)90404-2. [DOI] [PubMed] [Google Scholar]
  8. Crane L. J., Miller D. L. Synthesis and secretion of fibrinogen and albumin by isolated rat hepatocytes. Biochem Biophys Res Commun. 1974 Oct 23;60(4):1269–1277. doi: 10.1016/0006-291x(74)90335-0. [DOI] [PubMed] [Google Scholar]
  9. Doolittle R. F. Structural aspects of the fibrinogen to fibrin conversion. Adv Protein Chem. 1973;27:1–109. doi: 10.1016/s0065-3233(08)60446-5. [DOI] [PubMed] [Google Scholar]
  10. Goldberg A. L., Dice J. F. Intracellular protein degradation in mammalian and bacterial cells. Annu Rev Biochem. 1974;43(0):835–869. doi: 10.1146/annurev.bi.43.070174.004155. [DOI] [PubMed] [Google Scholar]
  11. Granner D. K., Hayashi S., Thompson E. B., Tomkins G. M. Stimulation of tyrosine aminotransferase synthesis by dexamethasone phosphate in cell culture. J Mol Biol. 1968 Jul 28;35(2):291–301. doi: 10.1016/s0022-2836(68)80025-7. [DOI] [PubMed] [Google Scholar]
  12. Griffin E. E., Miller L. L. Effects of hypophysectomy of liver donor on net synthesis of specific plasma proteins by the isolated perfused rat liver. Modulation of synthesis of albumin, fibrinogen, alpha 1-acid glycoprotein, alpha 2-(acute phase)-globulin, and haptoglobin by insulin, cortisol, triiodothyronine, and growth hormone. J Biol Chem. 1974 Aug 25;249(16):5062–5069. [PubMed] [Google Scholar]
  13. Howard R. B., Lee J. C., Pesch L. A. The fine structure, potassium content, and respiratory activity of isolated rat liver parenchymal cells prepared by improved enzymatic techniques. J Cell Biol. 1973 Jun;57(3):642–658. doi: 10.1083/jcb.57.3.642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Howard R. B., Pesch L. A. Respiratory activity of intact, isolated parenchymal cells from rat liver. J Biol Chem. 1968 Jun 10;243(11):3105–3109. [PubMed] [Google Scholar]
  15. Jeejeebhoy K. N., Bruce-Robertson A., Ho J., Sodtke U. The effect of cortisol on the synthesis of rat plasma albumin, fibrinogen and transferrin. Biochem J. 1972 Nov;130(2):533–538. doi: 10.1042/bj1300533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jeejeebhoy K. N., Ho J., Greenberg G. R., Phillips M. J., Bruce-Robertson A., Sodtke U. Albumin, fibrinogen and transferrin synthesis in isolated rat hepatocyte suspensions. A model for the study of plasma protein synthesis. Biochem J. 1975 Jan;146(1):141–155. doi: 10.1042/bj1460141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Johnson M. E., Das N. M., Butcher F. R., Fain J. N. The regulation of gluconeogenesis in isolated rat liver cells by glucagon, insulin, dibutyryl cyclic adenosine monophosphate, and fatty acids. J Biol Chem. 1972 May 25;247(10):3229–3235. [PubMed] [Google Scholar]
  18. LIN E. C., KNOX W. E. Adaptation of the rat liver tyrosine-alpha-ketoglutarate transaminase. Biochim Biophys Acta. 1957 Oct;26(1):85–88. doi: 10.1016/0006-3002(57)90057-4. [DOI] [PubMed] [Google Scholar]
  19. Lázár G., Tóth A., Karády S. Effect of adaptation to histamine and epinephrine on hyperfibrinogenaemia induced by histamine and epinephrine. Acta Physiol Acad Sci Hung. 1972;41(2):107–112. [PubMed] [Google Scholar]
  20. MILLER L. L., BALE W. F. Synthesis of all plasma protein fractions except gamma globulins by the liver; the use of zone electrophoresis and lysine-epsilon-C14 to define the plasma proteins synthesized by the isolated perfused liver. J Exp Med. 1954 Feb;99(2):125–132. doi: 10.1084/jem.99.2.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. MONKHOUSE F. C., MILOJEVIC S. Changes in fibrinogen level after infusion of thrombin and thromboplastin. Am J Physiol. 1960 Dec;199:1165–1168. doi: 10.1152/ajplegacy.1960.199.6.1165. [DOI] [PubMed] [Google Scholar]
  22. McKenzie J. M., Fowler P. R. Supporting role of the adrenal cortex in the induction of hyperfibrinogenemia. Am J Physiol. 1968 Apr;214(4):786–790. doi: 10.1152/ajplegacy.1968.214.4.786. [DOI] [PubMed] [Google Scholar]
  23. Morgan E. H., Peters T., Jr The biosynthesis of rat serum albumin. V. Effect of protein depletion and refeeding on albumin and transferrin synthesis. J Biol Chem. 1971 Jun 10;246(11):3500–3507. [PubMed] [Google Scholar]
  24. Peters T., Jr, Peters J. C. The biosynthesis of rat serum albumin. VI. Intracellular transport of albumin and rates of albumin and liver protein synthesis in vivo under various physiological conditions. J Biol Chem. 1972 Jun 25;247(12):3858–3863. [PubMed] [Google Scholar]
  25. Schreiber G., Urban J., Zähringer J., Reutter W., Frosch U. The secretion of serum protein and the synthesis of albumin and total protein in regenerating rat liver. J Biol Chem. 1971 Jul 25;246(14):4531–4538. [PubMed] [Google Scholar]
  26. Straughn W., 3rd, Wagner R. H. A simple method for preparing fibrinogen. Thromb Diath Haemorrh. 1966 Jul 31;16(1):198–206. [PubMed] [Google Scholar]
  27. Van Venrooij W. J., Moonen H., Van Loon-Klaassen L. Source of amino acids used for protein synthesis in HeLa cells. Eur J Biochem. 1974 Dec 16;50(1):297–304. doi: 10.1111/j.1432-1033.1974.tb03898.x. [DOI] [PubMed] [Google Scholar]
  28. Wagle S. R., Sampson L. Studies on the differential response to insulin on the stimulation of amino acid incorporation into protein in isolated hepatocytes containing different levels of glycogen. Biochem Biophys Res Commun. 1975 May 5;64(1):72–80. doi: 10.1016/0006-291x(75)90221-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES