Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1977 Feb 1;72(2):380–389. doi: 10.1083/jcb.72.2.380

Binding of microtubules to pituitary secretory granules and secretory granule membranes

PMCID: PMC2111003  PMID: 833201

Abstract

Microtubules assembled in vitro were bound to purified porcine pituitary secretory granules and to isolated granule membranes. The interaction between microtubules and whole secretory granules was demonstrated by alteration in the sedimentation properties of the microtubules. Incubation of secretory granules with microtubules resulted in pelleting of microtubules which increased as a function of the number of granules added. Binding was quantitated by measurement of the tubulin remaining in the supernate after centrifugation. The interaction of secretory granules and microtubules was inhibited by nucleoside triphosphates and augmented by adenosine 5'-monophosphate and adenosine. When depolymerized protein from microtubules was incubated with secretory granules, the granules did not appear to bind the soluble tubulin dimer present in these preparations. However, the high molecular weight protein associated with microtubules was adsorbed by secretory granules during the binding process. Incubation of isolated secretory granule membranes with microtubules followed by centrifugation to density equilibrium in a discontinuous sucrose density gradient caused pelleting of the membranes, which otherwise banded higher in the gradient. The visible alteration in membrane sedimentation was confirmed by measurements of the membrane-associated magnesium-ATPase activity and by a shift in radioactivity in iodinated membrane preparations. Our data suggest a role for microtubules in the intracellular movement of secretory granules; this movement is perhaps brought about by dynein-like cross bridges which link the tubulin backbone and granule surface.

Full Text

The Full Text of this article is available as a PDF (1,020.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. D. Evidence for firm linkages between microtubules and membrane-bounded vesicles. J Cell Biol. 1975 Feb;64(2):497–503. doi: 10.1083/jcb.64.2.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Becker J. S., Oliver J. M., Berlin R. D. Fluorescence techniques for following interactions of microtubule subunits and membranes. Nature. 1975 Mar 13;254(5496):152–154. doi: 10.1038/254152a0. [DOI] [PubMed] [Google Scholar]
  3. Borisy G. G., Olmsted J. B., Marcum J. M., Allen C. Microtubule assembly in vitro. Fed Proc. 1974 Feb;33(2):167–174. [PubMed] [Google Scholar]
  4. Borisy G. G., Olmsted J. B. Nucleated assembly of microtubules in porcine brain extracts. Science. 1972 Sep 29;177(4055):1196–1197. doi: 10.1126/science.177.4055.1196. [DOI] [PubMed] [Google Scholar]
  5. Burns R. G., Pollard T. D. A dynein-like protein from brain. FEBS Lett. 1974 Apr 1;40(2):274–280. doi: 10.1016/0014-5793(74)80243-7. [DOI] [PubMed] [Google Scholar]
  6. Dentler W. L., Granett S., Rosenbaum J. L. Ultrastructural localization of the high molecular weight proteins associated with in vitro-assembled brain microtubules. J Cell Biol. 1975 Apr;65(1):237–241. doi: 10.1083/jcb.65.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Diegelmann R. F., Peterkofsky B. Inhibition of collagen secretion from bone and cultured fibroblasts by microtubular disruptive drugs. Proc Natl Acad Sci U S A. 1972 Apr;69(4):892–896. doi: 10.1073/pnas.69.4.892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gibbons I. R., Rowe A. J. Dynein: A Protein with Adenosine Triphosphatase Activity from Cilia. Science. 1965 Jul 23;149(3682):424–426. doi: 10.1126/science.149.3682.424. [DOI] [PubMed] [Google Scholar]
  9. Gillespie E., Lichtenstein L. M. Histamine release from human leukocytes: studies with deuterium oxide, colchicine, and cytochalasin B. J Clin Invest. 1972 Nov;51(11):2941–2947. doi: 10.1172/JCI107118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Herz R., Weber A., Reiss I. The role of magnesium in the relaxation of myofibrils. Biochemistry. 1969 Jun;8(6):2266–2271. doi: 10.1021/bi00834a005. [DOI] [PubMed] [Google Scholar]
  11. Holmes K. V., Choppin P. W. On the role of microtubules in movement and alignment of nuclei in virus-induced syncytia. J Cell Biol. 1968 Dec;39(3):526–543. doi: 10.1083/jcb.39.3.526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jacobs L. S., McKeel D. W., Jarett L., Daughaday W. H. The distribution of growth hormone and protein in subcellular fractions of porcine adenohypophysis. Endocrinology. 1973 Feb;92(2):477–486. doi: 10.1210/endo-92-2-477. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Lacy P. E., Howell S. L., Young D. A., Fink C. J. New hypothesis of insulin secretion. Nature. 1968 Sep 14;219(5159):1177–1179. doi: 10.1038/2191177a0. [DOI] [PubMed] [Google Scholar]
  15. Le Marchand Y., Patzelt C., Assimacopoulos-Jeannet F., Loten E. G., Jeanrenaud B. Evidence for a role of the microtubular system in the secretion of newly synthesized albumin and other proteins by the liver. J Clin Invest. 1974 Jun;53(6):1512–1517. doi: 10.1172/JCI107701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Le Marchand Y., Singh A., Assimacopoulos-Jeannet F., Orci L., Rouiller C., Jeanrenaud B. A role for the microtubular system in the release of very low density lipoproteins by perfused mouse livers. J Biol Chem. 1973 Oct 10;248(19):6862–6870. [PubMed] [Google Scholar]
  17. Malaisse W. J., Malaisse-Lagae F., Walker M. O., Lacy P. E. The stimulus-secretion coupling of glucose-induced insulin release. V. The participation of a microtubular-microfilamentous system. Diabetes. 1971 May;20(5):257–265. doi: 10.2337/diab.20.5.257. [DOI] [PubMed] [Google Scholar]
  18. Mohri H. The function of tubulin in motile systems. Biochim Biophys Acta. 1976 Apr 30;456(1):85–127. doi: 10.1016/0304-4173(76)90009-4. [DOI] [PubMed] [Google Scholar]
  19. Murphy D. B., Borisy G. G. Association of high-molecular-weight proteins with microtubules and their role in microtubule assembly in vitro. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2696–2700. doi: 10.1073/pnas.72.7.2696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Murphy D. B. The mechanism of microtubule-dependent movement of pigment granules in teleost chromatophores. Ann N Y Acad Sci. 1975 Jun 30;253:692–701. doi: 10.1111/j.1749-6632.1975.tb19238.x. [DOI] [PubMed] [Google Scholar]
  21. Neville D. M., Jr Molecular weight determination of protein-dodecyl sulfate complexes by gel electrophoresis in a discontinuous buffer system. J Biol Chem. 1971 Oct 25;246(20):6328–6334. [PubMed] [Google Scholar]
  22. Olmsted J. B., Borisy G. G. Microtubules. Annu Rev Biochem. 1973;42:507–540. doi: 10.1146/annurev.bi.42.070173.002451. [DOI] [PubMed] [Google Scholar]
  23. Shelanski M. L., Gaskin F., Cantor C. R. Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci U S A. 1973 Mar;70(3):765–768. doi: 10.1073/pnas.70.3.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shiino M., Warchol J. B., Rennels E. G. Microtubules in prolactin cells of the rat anterior pituitary gland. Proc Soc Exp Biol Med. 1974 Nov;147(2):361–365. doi: 10.3181/00379727-147-38342. [DOI] [PubMed] [Google Scholar]
  25. Smith D. S., Järlfors U., Cameron B. F. Morphological evidence for the participation of microtubules in axonal transport. Ann N Y Acad Sci. 1975 Jun 30;253:472–506. doi: 10.1111/j.1749-6632.1975.tb19223.x. [DOI] [PubMed] [Google Scholar]
  26. Summers K. E., Gibbons I. R. Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3092–3096. doi: 10.1073/pnas.68.12.3092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Summers K. E., Gibbons I. R. Effects of trypsin digestion on flagellar structures and their relationship to motility. J Cell Biol. 1973 Sep;58(3):618–629. doi: 10.1083/jcb.58.3.618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Temple R., Williams J. A., Wilber J. F., Wolff J. Colchicine and hormone secretion. Biochem Biophys Res Commun. 1972 Feb 16;46(3):1454–1461. doi: 10.1016/s0006-291x(72)80140-2. [DOI] [PubMed] [Google Scholar]
  29. Thoa N. B., Wooten G. F., Axelrod J., Kopin I. J. Inhibition of release of dopamine- -hydroxylase and norepinephrine from sympathetic nerves by colchicine, vinblastine, or cytochalasin-B (hypogastric nerve stimulation-exocytosis-microtubules-microfilaments-guinea pig). Proc Natl Acad Sci U S A. 1972 Feb;69(2):520–522. doi: 10.1073/pnas.69.2.520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tonomura Y., Imamura K., Ikehara M., Uno H., Harada F. Interaction between synthetic ATP analogues and actomyosin systems. IV. J Biochem. 1967 Apr;61(4):460–472. doi: 10.1093/oxfordjournals.jbchem.a128569. [DOI] [PubMed] [Google Scholar]
  31. Williams J. A., Wolff J. Possible role of microtubules in thyroid secretion. Proc Natl Acad Sci U S A. 1970 Dec;67(4):1901–1908. doi: 10.1073/pnas.67.4.1901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wilson L., Bamburg J. R., Mizel S. B., Grisham L. M., Creswell K. M. Interaction of drugs with microtubule proteins. Fed Proc. 1974 Feb;33(2):158–166. [PubMed] [Google Scholar]
  33. Yount R. G., Ojala D., Babcock D. Interaction of P--N--P and P--C--P analogs of adenosine triphosphate with heavy meromyosin, myosin, and actomyosin. Biochemistry. 1971 Jun 22;10(13):2490–2496. doi: 10.1021/bi00789a010. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES