Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1977 Feb 1;72(2):260–277. doi: 10.1083/jcb.72.2.260

Conversion of lamellar body membranes into tubular myelin in alveoli of fetal rat lungs

PMCID: PMC2111004  PMID: 833198

Abstract

Fluid-filled lumina of fetal rat lungs contain lamellar bodies (LBs) as well as tubular myelin (TM), both of which are thought to be stores of phospholipid-rich pulmonary surfactant. The alveolar epithelium is believed to secrete LBs, but neither the origin nor the mechanism of TM formation is entirely certain. The main objective of this study was to determine the relationship between secreted LBs and TM and to define membrane phenomena which occur during TM formation. I examined lung tissues of 20-21 day-old fetuses (day 22 = term) using transmission and high voltage transmission electron microscopy and cytochemistry. My findings indicate that secreted LBs, identified by the presence of an acid-phosphatase reactive core, are the precursor of TM. Secreted LBs are highly organized structures which contain structurally specialized areas, one of which is a "mini-lattice" structure similar to TM. During TM formation, fuzzes or 8.0-nm diameter particles appear on transition membranes, although LB membranes appear to lack both structures. Similar particles are present on TM membranes and are generally associated with membrane intersections. My results provide evidence that TM is formed from LBs within the alveolar lumen by mechanisms which may be complex.

Full Text

The Full Text of this article is available as a PDF (6.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Askin F. B., Kuhn C. The cellular origin of pulmonary surfactant. Lab Invest. 1971 Sep;25(3):260–268. [PubMed] [Google Scholar]
  2. BALIS J. U., CONEN P. E. THE ROLE OF ALVEOLAR INCLUSION BODIES IN THE DEVELOPING LUNG. Lab Invest. 1964 Oct;13:1215–1229. [PubMed] [Google Scholar]
  3. BROWN E. S. ISOLATION AND ASSAY OF DIPALMITYL LECITHIN IN LUNG EXTRACTS. Am J Physiol. 1964 Aug;207:402–406. doi: 10.1152/ajplegacy.1964.207.2.402. [DOI] [PubMed] [Google Scholar]
  4. BUCKINGHAM S., AVERY M. E. Time of appearance of lung surfactant in the foetal mouse. Nature. 1962 Feb 17;193:688–689. doi: 10.1038/193688a0. [DOI] [PubMed] [Google Scholar]
  5. CLEMENTS J. A. Surface phenomena in relation to pulmonary function. Physiologist. 1962 Feb;5:11–28. [PubMed] [Google Scholar]
  6. Callas G. A new fixation technique for the electron microscopic study of pulmonary surfactant. Anat Rec. 1974 Nov;180(3):457–463. doi: 10.1002/ar.1091800305. [DOI] [PubMed] [Google Scholar]
  7. Friend D. S., Gilula N. B. Variations in tight and gap junctions in mammalian tissues. J Cell Biol. 1972 Jun;53(3):758–776. doi: 10.1083/jcb.53.3.758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Friend D. S., Rudolf I. Acrosomal disruption in sperm. Freeze-fracture of altered membranes. J Cell Biol. 1974 Nov;63(2 Pt 1):466–479. doi: 10.1083/jcb.63.2.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gil J., Reiss O. K. Isolation and characterization of lamellar bodies and tubular myelin from rat lung homogenates. J Cell Biol. 1973 Jul;58(1):152–171. doi: 10.1083/jcb.58.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gil J. Ultrastructure of lung fixed under physiologically defined conditions. Arch Intern Med. 1971 May;127(5):896–902. [PubMed] [Google Scholar]
  11. Gil J., Weibel E. R. Morphological study of pressure-volume hysteresis in rat lungs fixed by vascular perfusion. Respir Physiol. 1972 Jun;15(2):190–213. doi: 10.1016/0034-5687(72)90098-9. [DOI] [PubMed] [Google Scholar]
  12. Goerke J. Lung surfactant. Biochim Biophys Acta. 1974 Dec 16;344(3-4):241–261. doi: 10.1016/0304-4157(74)90009-4. [DOI] [PubMed] [Google Scholar]
  13. Golfischer S., Kikkawa Y., Hoffman L. The demonstration of acid hydrolase activities in the inclusion bodies of type II alveolar cells and other lysosomes in the rabbit lung. J Histochem Cytochem. 1968 Feb;16(2):102–109. doi: 10.1177/16.2.102. [DOI] [PubMed] [Google Scholar]
  14. Hauser H., Henry R., Leslie R. B., Stubbs J. The interaction of apoprotein from porcine high-density lipoprotein with dimyristoyl phosphatidylcholine. Eur J Biochem. 1974 Oct 2;48(2):583–594. doi: 10.1111/j.1432-1033.1974.tb03801.x. [DOI] [PubMed] [Google Scholar]
  15. KLAUS M. H., CLEMENTS J. A., HAVEL R. J. Composition of surface-active material isolated from beef lung. Proc Natl Acad Sci U S A. 1961 Nov 15;47:1858–1859. doi: 10.1073/pnas.47.11.1858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Karnovsky M. J. The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J Cell Biol. 1967 Oct;35(1):213–236. doi: 10.1083/jcb.35.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kikkawa Y., Motoyama E. K., Cook C. D. The ultrastructure of the lungs of lambs. The relation of osmiophilic inclusions and alveolar lining layer to fetal maturation and experimentally produced respiratory distress. Am J Pathol. 1965 Nov;47(5):877–903. [PMC free article] [PubMed] [Google Scholar]
  18. Kikkawa Y., Yoneda K., Smith F., Packard B., Suzuki K. The type II epithelial cells of the lung. II. Chemical composition and phospholipid synthesis. Lab Invest. 1975 Mar;32(3):295–302. [PubMed] [Google Scholar]
  19. King R. J., Clements J. A. Surface active materials from dog lung. II. Composition and physiological correlations. Am J Physiol. 1972 Sep;223(3):715–726. doi: 10.1152/ajplegacy.1972.223.3.715. [DOI] [PubMed] [Google Scholar]
  20. Kuhn C., 3rd A comparison of freeze-substitution with other methods for preservation of the pulmonary alveolar lining layer. Am J Anat. 1972 Apr;133(4):495–507. doi: 10.1002/aja.1001330410. [DOI] [PubMed] [Google Scholar]
  21. Kuhn C., 3rd Cytochemistry of pulmonary alveolar epithelial cells. Am J Pathol. 1968 Nov;53(5):809–833. [PMC free article] [PubMed] [Google Scholar]
  22. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. LUZZATI V., HUSSON F. The structure of the liquid-crystalline phasis of lipid-water systems. J Cell Biol. 1962 Feb;12:207–219. doi: 10.1083/jcb.12.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Morgan T. E. Pulmonary surfactant. N Engl J Med. 1971 May 27;284(21):1185–1193. doi: 10.1056/NEJM197105272842105. [DOI] [PubMed] [Google Scholar]
  25. Ryan U. S., Ryan J. W., Smith D. S. Alveolar type II cells: studies on the mode of release of lamellar bodies. Tissue Cell. 1975;7(3):587–599. doi: 10.1016/0040-8166(75)90028-2. [DOI] [PubMed] [Google Scholar]
  26. Satir B., Schooley C., Satir P. Membrane fusion in a model system. Mucocyst secretion in Tetrahymena. J Cell Biol. 1973 Jan;56(1):153–176. doi: 10.1083/jcb.56.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Smith D. S., Smith U., Ryan J. W. Freeze-fractured lamellar body membranes of the rat lung great alveolar cell. Tissue Cell. 1972;4(3):457–468. doi: 10.1016/s0040-8166(72)80022-3. [DOI] [PubMed] [Google Scholar]
  28. Smith U., Smith D. S., Ryan J. W. Tubular myelin assembly in type II alveolar cells: freeze-fracture studies. Anat Rec. 1973 May;176(1):125–127. doi: 10.1002/ar.1091760110. [DOI] [PubMed] [Google Scholar]
  29. Sorokin S P. A morphologic and cytochemical study on the great alveolar cell. J Histochem Cytochem. 1966 Dec;14(12):884–897. doi: 10.1177/14.12.884. [DOI] [PubMed] [Google Scholar]
  30. Spitzer H. L., Rice J. M., MacDonald P. C., Johnston J. M. Phospholipid biosynthesis in lung lamellar bodies. Biochem Biophys Res Commun. 1975 Sep 2;66(1):17–23. doi: 10.1016/s0006-291x(75)80288-9. [DOI] [PubMed] [Google Scholar]
  31. Spitznas M., Reale E. Fracture faces of fenestrations and junctions of endothelial cells in human choroidal vessels. Invest Ophthalmol. 1975 Feb;14(2):98–107. [PubMed] [Google Scholar]
  32. Stratton C. J. Multilamellar body formation in mammalian lung: an ultrastructural study utilizing three lipid-retention procedures. Lung multilamellar body formation. J Ultrastruct Res. 1975 Sep;52(3):309–320. doi: 10.1016/s0022-5320(75)80071-2. [DOI] [PubMed] [Google Scholar]
  33. Sun C. N. Lattice structures and osmiophilic bodies in the developing respiratory tissue of rats. J Ultrastruct Res. 1966 Jun;15(3):380–388. doi: 10.1016/s0022-5320(66)80114-4. [DOI] [PubMed] [Google Scholar]
  34. Untersee P., Gil J., Weibel E. R. Visualization of extracellular lining layer of lung alveoli by freeze-etching. Respir Physiol. 1971 Nov;13(2):171–185. doi: 10.1016/0034-5687(71)90088-0. [DOI] [PubMed] [Google Scholar]
  35. Vatter A. E., Reiss O. K., Newman J. K., Lindquist K., Groeneboer E. Enzymes of the lung. I. Detection of esterase with a new cytochemical method. J Cell Biol. 1968 Jul;38(1):80–98. doi: 10.1083/jcb.38.1.80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Weibel E. R., Gil J. Electron microscopic demonstration of an extracellular duplex lining layer of alveoli. Respir Physiol. 1968 Jan;4(1):42–57. doi: 10.1016/0034-5687(68)90006-6. [DOI] [PubMed] [Google Scholar]
  37. Weibel E. R., Kistler G. S., Töndury G. A stereologic electron microscope study of "tubular myelin figures" in alveolar fluids of rat lungs. Z Zellforsch Mikrosk Anat. 1966;69:418–427. doi: 10.1007/BF00406293. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES