Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1977 Feb 1;72(2):278–291. doi: 10.1083/jcb.72.2.278

Thermotropic lateral translational motion of intramembrane particles in the inner mitochondrial membrane and its inhibition by artificial peripheral proteins

PMCID: PMC2111005  PMID: 833199

Abstract

Freeze fracturing and deep etching have been used to study thermotropic lateral translational motion of intramembrane particles and membrane surface anionic groups in the inner mitochondrial membrane. When the inner membrane is equilibrated at low temperature, the fracture faces of both halves of the membrane reveal a lateral separation between intramembrane particles and particle free, large smooth patches. Such separation is completely reversed through free lateral translational diffusion by reversing the temperature. The low temperature induced, particle-free, smooth membrane patches appear to represent regions of protein-excluding, ordered bilayer lipid which form during thermotropic liquid crystalline to gel state phase transitions. When polycationic ferritin is electrostatically bound to anionic groups exposed at the membrane surface at concentrations which inhibit the activities of cytochrome c oxidase and succinate permease, the bound ferritin migrates with intramembrane particles during the thermotropic lateral separation between the membrane particles and smooth patches. When bound polycationic ferritin is cross-bridged with native ferritin, an artificial peripheral protein lattice forms in association with the surface anionic groups and diminishes the thermotropic lateral translational motion of intramembrane particles in the membrane. These results reveal that the anionic groups of metabolically active integral proteins which are known to be exposed at the surface of the inner mitochondrial membrane migrate with intramembrane particles in the plane of the membrane under conditions which induce lipid-protein lateral separations. In addition, cross-bridging of the anionic groups through an artificial peripheral protein lattice appears to diminish such induced lipid protein lateral separations.

Full Text

The Full Text of this article is available as a PDF (4.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews P. M., Hackenbrock C. R. A scanning and stereographic ultrastructural analysis of the isolated inner mitochondrial membrane during change in metabolic activity. Exp Cell Res. 1975 Jan;90(1):127–136. doi: 10.1016/0014-4827(75)90365-1. [DOI] [PubMed] [Google Scholar]
  2. Blazyk J. F., Steim J. M. Phase transitions in mammalian membranes. Biochim Biophys Acta. 1972 Jun 20;266(3):737–741. doi: 10.1016/0006-3002(72)90019-4. [DOI] [PubMed] [Google Scholar]
  3. Chen Y. S., Hubbell W. L. Temperature- and light-dependent structural changes in rhodopsin-lipid membranes. Exp Eye Res. 1973 Dec 24;17(6):517–532. doi: 10.1016/0014-4835(73)90082-1. [DOI] [PubMed] [Google Scholar]
  4. Colbeau A., Nachbaur J., Vignais P. M. Enzymic characterization and lipid composition of rat liver subcellular membranes. Biochim Biophys Acta. 1971 Dec 3;249(2):462–492. doi: 10.1016/0005-2736(71)90123-4. [DOI] [PubMed] [Google Scholar]
  5. Danon D., Goldstein L., Marikovsky Y., Skutelsky E. Use of cationized ferritin as a label of negative charges on cell surfaces. J Ultrastruct Res. 1972 Mar;38(5):500–510. doi: 10.1016/0022-5320(72)90087-1. [DOI] [PubMed] [Google Scholar]
  6. Grant C. W., McConnell H. M. Glycophorin in lipid bilayers. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4653–4657. doi: 10.1073/pnas.71.12.4653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gulik-Krzywicki T., Rivas E., Luzzati V. Structure et polymorphisme des lipides: étude par diffraction des rayons X du systéme formé de lipides de mitochondries de coeur de boeuf et d'eau. J Mol Biol. 1967 Jul 28;27(2):303–322. doi: 10.1016/0022-2836(67)90022-8. [DOI] [PubMed] [Google Scholar]
  8. Hackenbrock C. R. Comparative distribution of cytochrome oxidase, succinate permease, and fixed anionic sites on the intact inner mitochondrial membrane. Polycationic ferritin as a visually detectable metabolic inhibitor. Arch Biochem Biophys. 1975 Sep;170(1):139–148. doi: 10.1016/0003-9861(75)90105-8. [DOI] [PubMed] [Google Scholar]
  9. Hackenbrock C. R. Energy-linked ultrastructural transformations in isolated liver mitochondria and mitoplasts. Preservation of configurations by freeze-cleaving compared to chemical fixation. J Cell Biol. 1972 May;53(2):450–465. doi: 10.1083/jcb.53.2.450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hackenbrock C. R., Miller K. J. The distribution of anionic sites on the surfaces of mitochondrial membranes. Visual probing with polycationic ferritin. J Cell Biol. 1975 Jun;65(3):615–630. doi: 10.1083/jcb.65.3.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hackenbrock C. R. Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria. J Cell Biol. 1966 Aug;30(2):269–297. doi: 10.1083/jcb.30.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hackenbrock C. R. Ultrastructural bases for metabolically linked mechanical activity in mitochondria. II. Electron transport-linked ultrastructural transformations in mitochondria. J Cell Biol. 1968 May;37(2):345–369. doi: 10.1083/jcb.37.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kleemann W., Grant C. W., McConnell H. M. Lipid phase separations and protein distribution in membranes. J Supramol Struct. 1974;2(5-6):609–616. doi: 10.1002/jss.400020508. [DOI] [PubMed] [Google Scholar]
  14. Kleemann W., McConnell H. M. Lateral phase separations in Escherichia coli membranes. Biochim Biophys Acta. 1974 Apr 29;345(2):220–230. doi: 10.1016/0005-2736(74)90260-0. [DOI] [PubMed] [Google Scholar]
  15. Schnaitman C., Greenawalt J. W. Enzymatic properties of the inner and outer membranes of rat liver mitochondria. J Cell Biol. 1968 Jul;38(1):158–175. doi: 10.1083/jcb.38.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Speth V., Wunderlich F. Membranes of Tetrahymena. II. Direct visualization of reversible transitions in biomembrane structure induced by temperature. Biochim Biophys Acta. 1973 Feb 16;291(3):621–628. doi: 10.1016/0005-2736(73)90467-7. [DOI] [PubMed] [Google Scholar]
  17. Vail W. J., Riley R. K. The structure of cytochrome oxidase membranes. FEBS Lett. 1974 Apr 1;40(2):269–273. doi: 10.1016/0014-5793(74)80242-5. [DOI] [PubMed] [Google Scholar]
  18. Verkleij A. J., Ververgaert P. H., van Deenen L. L., Elbers P. F. Phase transitions of phospholipid bilayers and membranes of Acholeplasma laidlawii B visualized by freeze fracturing electron microscopy. Biochim Biophys Acta. 1972 Nov 2;288(2):326–332. doi: 10.1016/0005-2736(72)90253-2. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES