Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1977 Mar 1;72(3):584–594. doi: 10.1083/jcb.72.3.584

Ultrastructure of blebbing and phagocytosis of blebs by hyperplastic thyroid epithelial cells in vivo

PMCID: PMC2111018  PMID: 838768

Abstract

In addition to pseudopods, somewhat pleomorphic blebs were consistently found protruding from the apical surfaces of hyperplastic rat thyroid epithelial cells into the follicular lumens in vivo. Many blebs were knobby, roughly hemispherical protrusions, with a diameter of 2-3 mum. Such blebs had a densely packed microfilamentous core and contained numerous apparent ribosomes. They were morphologically similar to blebs that have been observed in a variety of cultured cells. Other blebs were larger, more elongate, and less knobby, but had a similar ultrastructural organization. Blebs of all sizes appeared to be phagocytosed on some occasions by nearby epithelial cells. The phagocytic process involved partial engulfment of the bleb by a typical epithelial pseudopod, followed by an apparent pinching-off process, presumably resulting in the separation of the bleb from its cells or origin. The pinching-off process was associated with a band of approx. 6-nm diameter microfilaments that developed within the pseudopod cytoplasm surrounding the base of the bleb and is postulated to function as a contractile ring. The finding of blebbing is an intact tissue in vivo indicates that this phenomenon is not restricted to cultured cells, and thus tends to extend the significance of in vitro observations of the process. In relation to their occurrence in the hyperplastic thyroid gland in vivo, possible interconversions are considered between different types of blebs, and between blebs and pseudopods.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOSS J. Mitosis in cultures of newt tissues. IV. The cell surface in late anaphase and the movements of ribonucleoprotein. Exp Cell Res. 1955 Feb;8(1):181–187. doi: 10.1016/0014-4827(55)90055-0. [DOI] [PubMed] [Google Scholar]
  2. Bhisey A. N., Freed J. J. Remnant motility of macrophages treated with cytochalasin B in the presence of colchicine. Exp Cell Res. 1975 Oct 15;95(2):376–384. doi: 10.1016/0014-4827(75)90563-7. [DOI] [PubMed] [Google Scholar]
  3. Bohman S. O., Maunsbach A. B. Effects on tissue fine structure of variations in colloid osmotic pressure of glutaraldehyde fixatives. J Ultrastruct Res. 1970 Jan;30(1):195–208. doi: 10.1016/s0022-5320(70)90073-0. [DOI] [PubMed] [Google Scholar]
  4. COSTERO I., POMERAT C. M. Cultivation of neurons from the adult human cerebral and cerebellar cortes. Am J Anat. 1951 Nov;89(3):405–467. doi: 10.1002/aja.1000890304. [DOI] [PubMed] [Google Scholar]
  5. DORNFELD E. J., OWCZARZAK A. Surface responses in cultures fibroblasts elicited by ethylenediaminetetraacetic acid. J Biophys Biochem Cytol. 1958 May 25;4(3):243–250. doi: 10.1083/jcb.4.3.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dipasquale A. Locomotion of epithelial cells. Factors involved in extension of the leading edge. Exp Cell Res. 1975 Oct 15;95(2):425–439. doi: 10.1016/0014-4827(75)90568-6. [DOI] [PubMed] [Google Scholar]
  7. FREED J. J., ENGLE J. L., RUDKIN G. T., SCHULTZ J. Ultraviolet radiation effects on Ehrlich ascites tumor cells; observations using a flying spot ultraviolet microscope. J Biophys Biochem Cytol. 1959 Mar 25;5(2):205–216. doi: 10.1083/jcb.5.2.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Godman G. C., Miranda A. F., Deitch A. D., Tanenbaum S. W. Action of cytochalasin D on cells of established lines. III. Zeiosis and movements at the cell surface. J Cell Biol. 1975 Mar;64(3):644–667. doi: 10.1083/jcb.64.3.644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Griffin F. M., Jr, Griffin J. A., Leider J. E., Silverstein S. C. Studies on the mechanism of phagocytosis. I. Requirements for circumferential attachment of particle-bound ligands to specific receptors on the macrophage plasma membrane. J Exp Med. 1975 Nov 1;142(5):1263–1282. doi: 10.1084/jem.142.5.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harris A. K. Cell surface movements related to cell locomotion. Ciba Found Symp. 1973;14:3–26. doi: 10.1002/9780470719978.ch2. [DOI] [PubMed] [Google Scholar]
  11. Kerr J. F., Wyllie A. H., Currie A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972 Aug;26(4):239–257. doi: 10.1038/bjc.1972.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LANDAU J. V., MCALEAR J. H. The micromorphology of FL and primary human amnion cells following exposure to high hydrostatic pressure. Cancer Res. 1961 Jul;21:812–814. [PubMed] [Google Scholar]
  13. Lentz T. L., Trinkaus J. P. A fine structural study of cytodifferentiation during cleavage, blastula, and gastrula stages of Fundulus heteroclitus. J Cell Biol. 1967 Jan;32(1):121–138. doi: 10.1083/jcb.32.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Miranda A. F., Godman G. C., Deitch A. D., Tanenbaum S. W. Action of cytochalasin D on cells of established lines. I. Early events. J Cell Biol. 1974 May;61(2):481–500. doi: 10.1083/jcb.61.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Miranda A. F., Godman G. C., Tanenbaum S. W. Action of cytochalasin D on cells of established lines. II. Cortex and microfilaments. J Cell Biol. 1974 Aug;62(2):406–423. doi: 10.1083/jcb.62.2.406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Perry M. M., John H. A., Thomas N. S. Actin-like filaments in the cleavage furrow of newt egg. Exp Cell Res. 1971 Mar;65(1):249–253. doi: 10.1016/s0014-4827(71)80075-7. [DOI] [PubMed] [Google Scholar]
  17. Perry M. M., Snow M. H. The blebbing response of 2-4 cell stage mouse embryos to cytochalasin B. Dev Biol. 1975 Aug;45(2):372–377. doi: 10.1016/0012-1606(75)90076-7. [DOI] [PubMed] [Google Scholar]
  18. Porter K. R., Puck T. T., Hsie A. W., Kelley D. An electron microscopy study of the effects on dibutyryl cyclic AMP on Chinese hamster ovary cells. Cell. 1974 Jul;2(3):145–162. doi: 10.1016/0092-8674(74)90089-0. [DOI] [PubMed] [Google Scholar]
  19. Porter K., Prescott D., Frye J. Changes in surface morphology of Chinese hamster ovary cells during the cell cycle. J Cell Biol. 1973 Jun;57(3):815–836. doi: 10.1083/jcb.57.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Poste G., Papahadjopoulos D., Nicolson G. L. Local anesthetics affect transmembrane cytoskeletal control of mobility and distribution of cell surface receptors. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4430–4434. doi: 10.1073/pnas.72.11.4430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Price Z. H. The micromorphology of zeiotic blebs in cultured human epithelial (HEp) cells. Exp Cell Res. 1967 Oct;48(1):82–92. doi: 10.1016/0014-4827(67)90278-9. [DOI] [PubMed] [Google Scholar]
  22. Prunieras M., Moreno G., Dosso Y., Vinzens F. Studies on guinea pig skin cell cultures. V. Co-culture of pigmented melanocytes and albino keratinocytes, a model for the study of pigment transfer. Acta Derm Venereol. 1976;56(1):1–9. [PubMed] [Google Scholar]
  23. Puck T. T., Waldren C. A., Hsie A. W. Membrane dynamics in the action of dibutyryl adenosine 3':5'-cyclic monophosphate and testosterone on mammalian cells. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1943–1947. doi: 10.1073/pnas.69.7.1943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. ROSENBERG M. D. The relative extensibility of cell surfaces. J Cell Biol. 1963 May;17:289–297. doi: 10.1083/jcb.17.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rose G. G. Zeiosis. I. Ejection of cell nuclei into zeiotic blebs. J R Microsc Soc. 1966 Dec;86(2):87–102. [PubMed] [Google Scholar]
  26. Rubin R. W., Everhart L. P. The effect of cell-to-cell contact on the surface morphology of Chinese hamster ovary cells. J Cell Biol. 1973 Jun;57(3):837–844. doi: 10.1083/jcb.57.3.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schroeder T. E. Actin in dividing cells: contractile ring filaments bind heavy meromyosin. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1688–1692. doi: 10.1073/pnas.70.6.1688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Seljelid R. Endocytosis in thyroid follicle cells. 3. An electron microscopic study of the cell surface and related structures. J Ultrastruct Res. 1967 Apr;18(1):1–24. doi: 10.1016/s0022-5320(67)80229-6. [DOI] [PubMed] [Google Scholar]
  29. Spitznas M., Hogan M. J. Outer segments of photoreceptors and the retinal pigment epithelium. Interrelationship in the human eye. Arch Ophthalmol. 1970 Dec;84(6):810–819. doi: 10.1001/archopht.1970.00990040812022. [DOI] [PubMed] [Google Scholar]
  30. Trinkaus J. P. Modes of cell locomotion in vivo. Ciba Found Symp. 1973;14:233–249. doi: 10.1002/9780470719978.ch11. [DOI] [PubMed] [Google Scholar]
  31. Wetzel B. K., Spicer S. S., Wollman S. H. Changes in fine structure and acid phosphatase localization in rat thyroid cells following thyrotropin administration. J Cell Biol. 1965 Jun;25(3):593–618. doi: 10.1083/jcb.25.3.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Young R. W. Shedding of discs from rod outer segments in the rhesus monkey. J Ultrastruct Res. 1971 Jan;34(1):190–203. doi: 10.1016/s0022-5320(71)90014-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES