Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1975 Apr 1;65(1):163–179. doi: 10.1083/jcb.65.1.163

Effects of actinomycin D on the association of newly formed ribonucleoproteins with the cistrons of ribosomal RNA in Triturus oocytes

PMCID: PMC2111160  PMID: 1127008

Abstract

The effect of actinomycin D(AMD) on the association of the nascent ribonucleo-protein (RNP) fibrils containing the precursors of ribosomal RNA (pre-rRNA) with their template deoxyribonucleoprotein (rDNP) strands has been studied in lampbrush stage oocytes from Triturus alpestris. Ovary pieces were incubated in vitro either in media containing radioactive ribonucleosides and then, for various times, in solutions containing 25 mug/ml AMD, or were directly exposed to the drug. The ultrastructure of the nucleoli and the nuclear periphery was studied by electron microscopy of thin sections and positively stained spread preparations of isolated nuclear contents, and by light and electron microscope autoradiography. The fate of the labeled pre-rRNA was followed by gel electrophoresis of RNA extracted from manually isolated nuclei. Our results show that the growing fibrils which contain the nascent pre-rRNA progressively detach from the DNP strands, the majority being released between 45 and 180 min after application of the drug. The release pattern seems to be random and does not show preference for regions close to the initiator or terminator sites of the transcribed rDNP units. There is a pronounced tendency to removal of groups of adjacent mascent fibrils. The effect of the drug is very heterogeneous. Even after 3 h of treatment with AMD the nucleoli exhibit several individual transcriptional units which appear almost completely covered with lateral fibrils. Autoradiography revealed that most of this released RNP remains within the confinements of the nucleoli which show some foci of aggregation and condensation of fibrillar components but no clear "segregation" phenomenon. In the gel- electrophoretic analysis, a significant but moderate decrease of labeled pre-rRNA was noted only in the first stable pre-rRNA component, whereas pre-rRNA classes of lower molecular weight are very stable under these conditions. The results are discussed in relation to the stability of rDNA transcription complexes and as a basis for an explanation of the ultrastructural changes which are generally observed in nucleoli of AMD-treated cells. It is postulated that inhibition of transcription results in a slow but progressive release of the arrested incomplete RNP fibrils from the template.

Full Text

The Full Text of this article is available as a PDF (5.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ACS G., REICH E., VALANJU S. RNA METABOLISM OF B. SUBTILIS. EFFECTS OF ACTINOMYCIN. Biochim Biophys Acta. 1963 Sep 17;76:68–79. [PubMed] [Google Scholar]
  2. Beabealashvilly R. S., Gursky G. V., Savotchkina L. P., Zasedatelev A. S. RNA polymerase-DNA complexes. 3. Binding of actinomycin D to RNA polymerase-DNA complex. Biochim Biophys Acta. 1973 Feb 4;294(1):425–433. [PubMed] [Google Scholar]
  3. Bernhard W. A new staining procedure for electron microscopical cytology. J Ultrastruct Res. 1969 May;27(3):250–265. doi: 10.1016/s0022-5320(69)80016-x. [DOI] [PubMed] [Google Scholar]
  4. Bernhard W., Frayssinet C., Lafarge C., Le Breton E. Lésions nucléolaires précoces provoquées par l'aflatoxine dans les cellules hépatiques du rat. C R Acad Sci Hebd Seances Acad Sci D. 1965 Aug 18;261(7):1785–1788. [PubMed] [Google Scholar]
  5. Birnstiel M. L., Chipchase M., Speirs J. The ribosomal RNA cistrons. Prog Nucleic Acid Res Mol Biol. 1971;11:351–389. doi: 10.1016/s0079-6603(08)60332-3. [DOI] [PubMed] [Google Scholar]
  6. Bordier C., Dubochet J. Electron microscopic localization of the binding sites of Escherichia coli RNA polymerase in the early promoter region of T7 DNA. Eur J Biochem. 1974 May 15;44(2):617–624. doi: 10.1111/j.1432-1033.1974.tb03519.x. [DOI] [PubMed] [Google Scholar]
  7. Brown D. D., Dawid I. B. Specific gene amplification in oocytes. Oocyte nuclei contain extrachromosomal replicas of the genes for ribosomal RNA. Science. 1968 Apr 19;160(3825):272–280. doi: 10.1126/science.160.3825.272. [DOI] [PubMed] [Google Scholar]
  8. Century T. J., Fenichel I. R., Horowitz S. B. The concentrations of water, sodium and potassium in the nucleus and cytoplasm of amphibian oocytes. J Cell Sci. 1970 Jul;7(1):5–13. doi: 10.1242/jcs.7.1.5. [DOI] [PubMed] [Google Scholar]
  9. Craig N. The effects of inhibitors of RNA and DNA synthesis on protein synthesis and polysome levels in mouse L-cells. J Cell Physiol. 1973 Oct;82(2):133–150. doi: 10.1002/jcp.1040820202. [DOI] [PubMed] [Google Scholar]
  10. Ebstein B. S. The distribution of DNA within the nucleoli of the amphibian oocyte as demonstrated by tritiated actinomycin D radioautography. J Cell Sci. 1969 Jul;5(1):27–44. doi: 10.1242/jcs.5.1.27. [DOI] [PubMed] [Google Scholar]
  11. Endo Y., Tominaga H., Natori Y. Effect of actinomycin D on turnover rate of messenger ribonucleic acid in rat liver. Biochim Biophys Acta. 1971 Jun 30;240(2):215–217. doi: 10.1016/0005-2787(71)90660-5. [DOI] [PubMed] [Google Scholar]
  12. Fakan S., Bernhard W. Nuclear labelling after prolonged 3H-uridine incorporation as visualized by high resolution autoradiography. Exp Cell Res. 1973 Jun;79(2):431–444. doi: 10.1016/0014-4827(73)90463-1. [DOI] [PubMed] [Google Scholar]
  13. Franke W. W., Falk H. Appearance of nuclear pore complexes after Bernhard's staining procedure. Histochemie. 1971;24(3):266–278. doi: 10.1007/BF00304196. [DOI] [PubMed] [Google Scholar]
  14. Franke W. W., Scheer U. Pathways of nucleocytoplasmic translocation of ribonucleoproteins. Symp Soc Exp Biol. 1974;(28):249–282. [PubMed] [Google Scholar]
  15. Franke W. W., Scheer U. The ultrastructure of the nuclear envelope of amphibian oocytes: a reinvestigation. I. The mature oocyte. J Ultrastruct Res. 1970 Feb;30(3):288–316. doi: 10.1016/s0022-5320(70)80064-8. [DOI] [PubMed] [Google Scholar]
  16. Franke W. W., Scheer U. The ultrastructure of the nuclear envelope of amphibian oocytes: a reinvestigation. II. The immature oocyte and dynamic aspects. J Ultrastruct Res. 1970 Feb;30(3):317–327. doi: 10.1016/s0022-5320(70)80065-x. [DOI] [PubMed] [Google Scholar]
  17. GEORGIEV G. P., SAMARINA O. P., LERMAN M. I., SMIRNOV M. N., SEVERTZOV A. N. BIOSYNTHESIS OF MESSENGER AND RIBOSOMAL RIBONUCLEIC ACIDS IN THE NUCLEOLOCHROMOSOMAL APPARATUS OF ANIMAL CELLS. Nature. 1963 Dec 28;200:1291–1294. doi: 10.1038/2001291a0. [DOI] [PubMed] [Google Scholar]
  18. GIRARD M., PENMAN S., DARNELL J. E. THE EFFECT OF ACTINOMYCIN ON RIBOSOME FORMATION IN HELA CELLS. Proc Natl Acad Sci U S A. 1964 Feb;51:205–211. doi: 10.1073/pnas.51.2.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gall J. G. Nuclear RNA of the salamander oocyte. Natl Cancer Inst Monogr. 1966 Dec;23:475–488. [PubMed] [Google Scholar]
  20. Goldblatt P. J., Sullivan R. J., Farber E. Morphologic and metabolic alterations in hepatic cell nucleoli induced by varying doses of actinomycin D. Cancer Res. 1969 Jan;29(1):124–135. [PubMed] [Google Scholar]
  21. Goldstein E. S., Penman S. Regulation of protein synthesis in mammalian cells. V. Further studies on the effect of actinomycin D on translation control in HeLa cells. J Mol Biol. 1973 Oct 25;80(2):243–254. doi: 10.1016/0022-2836(73)90170-8. [DOI] [PubMed] [Google Scholar]
  22. HARRIS H. Rapidly labelled ribonucleic acid in the cell nucleus. Nature. 1963 Apr 13;198:184–185. doi: 10.1038/198184a0. [DOI] [PubMed] [Google Scholar]
  23. Hyman R. W., Davidson N. Kinetics of the in vitro inhibition of transcription by actinomycin. J Mol Biol. 1970 Jun 14;50(2):421–438. doi: 10.1016/0022-2836(70)90202-0. [DOI] [PubMed] [Google Scholar]
  24. IZAWA M., ALLEFREY V. G., MIRSKY A. E. The relationship between RNA synthesis and loop structure in lampbrush chromosomes. Proc Natl Acad Sci U S A. 1963 Apr;49:544–551. doi: 10.1073/pnas.49.4.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kumar A., Wu R. S. Role of ribosomal RNA transcription in ribosome processing in HeLa cells. J Mol Biol. 1973 Oct 25;80(2):265–276. doi: 10.1016/0022-2836(73)90172-1. [DOI] [PubMed] [Google Scholar]
  26. LEVY H. B. EFFECT OF ACTINOMYCIN D ON HELA CELL NUCLEAR RNA METABOLISM. Proc Soc Exp Biol Med. 1963 Aug-Sep;113:886–889. doi: 10.3181/00379727-113-28521. [DOI] [PubMed] [Google Scholar]
  27. LaMarca M. J., Smith L. D., Strobel M. C. Quantitative and qualitative analysis of RNA synthesis in stage 6 and stage 4 oocytes of Xenopus laevis. Dev Biol. 1973 Sep;34(1):106–118. doi: 10.1016/0012-1606(73)90342-4. [DOI] [PubMed] [Google Scholar]
  28. Lane N. J. Intranuclear fibrillar bodies in actinomycin D-treated oocytes. J Cell Biol. 1969 Jan;40(1):286–291. doi: 10.1083/jcb.40.1.286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lane N. J. Spheroidal and ring nucleoli in amphibian oocytes. Patterns of uridine incorporation and fine structural features. J Cell Biol. 1967 Nov;35(2):421–434. doi: 10.1083/jcb.35.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Leick V. Effect of actinomycin D and DL-p-fluorophenylalanine on ribosome formation in Tetrahymena pyriformis. Eur J Biochem. 1969 Mar;8(2):215–220. doi: 10.1111/j.1432-1033.1969.tb00517.x. [DOI] [PubMed] [Google Scholar]
  31. Liau M. C., Perry R. P. Ribosome precursor particles in nucleoli. J Cell Biol. 1969 Jul;42(1):272–283. doi: 10.1083/jcb.42.1.272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Loening U. E., Jones K. W., Birnstiel M. L. Properties of the ribosomal RNA precursor in Xenopus laevis; comparison to the precursor in mammals and in plants. J Mol Biol. 1969 Oct 28;45(2):353–366. doi: 10.1016/0022-2836(69)90110-7. [DOI] [PubMed] [Google Scholar]
  33. Marinozzi V., Fiume L. Effects of -amanitin on mouse and rat liver cell nuclei. Exp Cell Res. 1971 Aug;67(2):311–322. doi: 10.1016/0014-4827(71)90414-9. [DOI] [PubMed] [Google Scholar]
  34. Meyer G. F., Hennig W. The nucleolus in primary spermatocytes of Drosophila hydei. Chromosoma. 1974 Jun 11;46(2):121–144. doi: 10.1007/BF00332512. [DOI] [PubMed] [Google Scholar]
  35. Miller O. L., Jr, Bakken A. H. Morphological studies of transcription. Acta Endocrinol Suppl (Copenh) 1972;168:155–177. doi: 10.1530/acta.0.071s155. [DOI] [PubMed] [Google Scholar]
  36. Miller O. L., Jr, Beatty B. R. Portrait of a gene. J Cell Physiol. 1969 Oct;74(2 Suppl):225+–225+. doi: 10.1002/jcp.1040740424. [DOI] [PubMed] [Google Scholar]
  37. Miller O. L., Jr, Beatty B. R. Visualization of nucleolar genes. Science. 1969 May 23;164(3882):955–957. doi: 10.1126/science.164.3882.955. [DOI] [PubMed] [Google Scholar]
  38. Penman S. RNA metabolism in the HeLa cell nucleus. J Mol Biol. 1966 May;17(1):117–130. doi: 10.1016/s0022-2836(66)80098-0. [DOI] [PubMed] [Google Scholar]
  39. Recher L., Briggs L. G., Parry N. T. A reevaluation of nuclear and nucleolar changes induced in vitro by actinomycin D. Cancer Res. 1971 Feb;31(2):140–151. [PubMed] [Google Scholar]
  40. Reich E., Goldberg I. H. Actinomycin and nucleic acid function. Prog Nucleic Acid Res Mol Biol. 1964;3:183–234. doi: 10.1016/s0079-6603(08)60742-4. [DOI] [PubMed] [Google Scholar]
  41. Riemann W., Muir C., Macgregor H. C. Sodium and potassium in oocytes of Triturus cristatus. J Cell Sci. 1969 Mar;4(2):299–304. doi: 10.1242/jcs.4.2.299. [DOI] [PubMed] [Google Scholar]
  42. Ringborg U., Daneholt B., Edström J. E., Egyházi E., Lambert B. Electrophoretic characterization of nucleolar RNA from Chironomus tentans salivary gland cells. J Mol Biol. 1970 Jul 28;51(2):327–340. doi: 10.1016/0022-2836(70)90146-4. [DOI] [PubMed] [Google Scholar]
  43. Ringborg U., Rydlander L. Nucleolar-derived ribonucleic acid in chromosomes, nuclear sap, and cytoplasm of Chironomus tentans salivary gland cells. J Cell Biol. 1971 Nov;51(21):355–368. doi: 10.1083/jcb.51.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Rogers M. E., Klein G. Amphibian ribosomal ribonucleic acids. Biochem J. 1972 Nov;130(1):281–288. doi: 10.1042/bj1300281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Rogers M. E. Ribonucleoprotein particles in the amphibian oocyte nucleus. Possible intermediates in ribosome synthesis. J Cell Biol. 1968 Mar;36(3):421–432. doi: 10.1083/jcb.36.3.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Rovera G., Berman S., Baserga R. Pulse labeling of RNA of mammalian cells. Proc Natl Acad Sci U S A. 1970 Apr;65(4):876–883. doi: 10.1073/pnas.65.4.876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Scheer U. Nuclear pore flow rate of ribosomal RNA and chain growth rate of its precursor during oogenesis of Xenopus laevis. Dev Biol. 1973 Jan;30(1):13–28. doi: 10.1016/0012-1606(73)90044-4. [DOI] [PubMed] [Google Scholar]
  48. Scheer U., Trendelenburg M. F., Franke W. W. Transcription of ribosomal RNA cistrons. Correlation of morphological and biochemical data. Exp Cell Res. 1973 Jul;80(1):175–190. doi: 10.1016/0014-4827(73)90289-9. [DOI] [PubMed] [Google Scholar]
  49. Scheer U. Ultrastructure of the nuclear envelope of amphibian oocytes. IV. Chemical nature of the nuclear pore complex material. Z Zellforsch Mikrosk Anat. 1972;127(1):127–148. doi: 10.1007/BF00582762. [DOI] [PubMed] [Google Scholar]
  50. Scholtissek C. Unphysiological breakdown of fast-labelled RNA by actinomycin D in primary chick fibroblasts. Eur J Biochem. 1972 Jun 23;28(1):70–73. doi: 10.1111/j.1432-1033.1972.tb01884.x. [DOI] [PubMed] [Google Scholar]
  51. Serfling E., Maximovsky L. F., Wobus U. Synthesis and processing of ribosomal ribonucleic acid in salivary gland cells of Chironomus thummi. Eur J Biochem. 1974 Jun 1;45(1):277–289. doi: 10.1111/j.1432-1033.1974.tb03552.x. [DOI] [PubMed] [Google Scholar]
  52. Simard R. The nucleus: action of chemical and physical agents. Int Rev Cytol. 1970;28:169–211. doi: 10.1016/s0074-7696(08)62543-7. [DOI] [PubMed] [Google Scholar]
  53. Snow M. H., Callan H. G. Evidence for a polarized movement of the lateral loops of newt lampbrush chromosomes during oogenesis. J Cell Sci. 1969 Jul;5(1):1–25. doi: 10.1242/jcs.5.1.1. [DOI] [PubMed] [Google Scholar]
  54. Snow M. H. The effect of actinomycin D in vivo upon peripheral nucleoli and other nuclear organelles in oocytes of Triturus cristatus. J Cell Sci. 1972 May;10(3):833–855. doi: 10.1242/jcs.10.3.833. [DOI] [PubMed] [Google Scholar]
  55. Sommerville J. Ribonucleoprotein particles derived from the lampbrush chromosomes of newt oocytes. J Mol Biol. 1973 Aug 15;78(3):487–503. doi: 10.1016/0022-2836(73)90470-1. [DOI] [PubMed] [Google Scholar]
  56. Stewart G. A., Farber E. The rapid acceleration of hepatic nuclear ribonucleic acid breakdown by actinomycin but not by ethionine. J Biol Chem. 1968 Sep 10;243(17):4479–4485. [PubMed] [Google Scholar]
  57. Tamaoki T., Mueller G. C. The effects of actinomycin D and puromycin on the formation of ribosomes in HeLa cells. Biochim Biophys Acta. 1965 Sep 6;108(1):73–80. doi: 10.1016/0005-2787(65)90109-7. [DOI] [PubMed] [Google Scholar]
  58. Trendelenburg M. F. Morphology of ribosomal RNA cistrons in oocytes of the water beetle, Dytiscus marginalis L. Chromosoma. 1974;48(2):119–135. doi: 10.1007/BF00283959. [DOI] [PubMed] [Google Scholar]
  59. Trendelenburg M. F., Scheer U., Franke W. W. Structural organization of the transcription of ribosomal DNA in oocytes of the house cricket. Nat New Biol. 1973 Oct 10;245(145):167–170. doi: 10.1038/newbio245167a0. [DOI] [PubMed] [Google Scholar]
  60. Trendelenburg M. F., Spring H., Scheer U., Franke W. W. Morphology of nucleolar cistrons in a plant cell, Acetabularia mediterranea. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3626–3630. doi: 10.1073/pnas.71.9.3626. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES