Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1975 Apr 1;65(1):180–191. doi: 10.1083/jcb.65.1.180

The permeability barrier in mammalian epidermis

PMCID: PMC2111161  PMID: 1127009

Abstract

The structural basis of the permeability barrier in mammalian epidermis was examined by tracer and freeze-fracture techniques. Water-soluble tracers (horesradish peroxidase, lanthanum, ferritin) were injected into neonatal mice or into isolated upper epidermal sheets obtained with staphylococcal exfoliatin. Tracers percolated through the intercellular spaces to the upper stratum granulosum, where further egress was impeded by extruded contents of lamellar bodies. The lamellar contents initially remain segregated in pockets, then fuse to form broad sheets which fill intercellular regions of the stratum corneum, obscuring the outer leaflet of the plasma membrane. These striated intercellular regions are interrupted by periodic bulbous dilatations. When adequately preserved, the interstices of the stratum corneum are wider, by a factor of 5-10 times that previously appreciated. Freeze-fracture replicas of granular cell membranes revealed desmosomes, sparse plasma membrane particles, and accumulating intercellular lamellae, but no tight junctions. Fractured stratum corneum displayed large, smooth, multilaminated fracture faces. By freeze-substitution, proof was obtained that the fracture plane had diverted from the usual intramembranous route in the stratum granulosum to the intercellular space in the stratum corneum. We conclude that: (a) the primary barrier to water loss is formed in the stratum granulosum and is subserved by intercellular deposition of lamellar bodies, rather than occluding zonules; (b) a novel, intercellular freeze-fracture plane occurs within the stratum corneum; (c) intercellular regions of the stratum corneum comprise an expanded, structurally complex, presumably lipid-rich region which may play an important role in percutaneous transport.

Full Text

The Full Text of this article is available as a PDF (4.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BIRBECK M. S., MERCER E. H. The electron microscopy of the human hair follicle. II. The hair cuticle. J Biophys Biochem Cytol. 1957 Mar 25;3(2):215–222. doi: 10.1083/jcb.3.2.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BRODY I. OBSERVATIONS ON THE FINE STRUCTURE OF THE HORNY LAYER IN THE NORMAL HUMAN EPIDERMIS. J Invest Dermatol. 1964 Jan;42:27–31. doi: 10.1038/jid.1964.8. [DOI] [PubMed] [Google Scholar]
  3. Branton D. Fracture faces of frozen myelin. Exp Cell Res. 1967 Mar;45(3):703–707. doi: 10.1016/0014-4827(67)90175-9. [DOI] [PubMed] [Google Scholar]
  4. Breathnach A. S., Goodman T., Stolinski C., Gross M. Freeze-fracture replication of cells of stratum corneum of human epidermis. J Anat. 1973 Jan;114(Pt 1):65–81. [PMC free article] [PubMed] [Google Scholar]
  5. Brody I. Intercellular space in normal human stratum corneum. Nature. 1966 Jan 29;209(5022):472–476. doi: 10.1038/209472a0. [DOI] [PubMed] [Google Scholar]
  6. Elias H., Hennig A., Schwartz D. E. Stereology: applications to biomedicalresearch. Physiol Rev. 1971 Jan;51(1):158–200. doi: 10.1152/physrev.1971.51.1.158. [DOI] [PubMed] [Google Scholar]
  7. FARQUHAR M. G., PALADE G. E. FUNCTIONAL ORGANIZATION OF AMPHIBIAN SKIN. Proc Natl Acad Sci U S A. 1964 Apr;51:569–577. doi: 10.1073/pnas.51.4.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Frithiof L. Ultrastructural changes in the plasma membrane in human oral epithelium. J Ultrastruct Res. 1970 Jul;32(1):1–17. doi: 10.1016/s0022-5320(70)80033-8. [DOI] [PubMed] [Google Scholar]
  9. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  10. Hashimoto K. Intercellular spaces of the human epidermis as demonstrated with lanthanum. J Invest Dermatol. 1971 Jul;57(1):17–31. doi: 10.1111/1523-1747.ep12292052. [DOI] [PubMed] [Google Scholar]
  11. James R., Branton D. The correlation between the saturation of membrane fatty acids and the presence of membrane fracture faces after osmium fixation. Biochim Biophys Acta. 1971 Jun 1;233(3):504–512. doi: 10.1016/0005-2736(71)90150-7. [DOI] [PubMed] [Google Scholar]
  12. Martinez-Palomo A., Erlij D., Bracho H. Localization of permeability barriers in the frog skin epithelium. J Cell Biol. 1971 Aug;50(2):277–287. doi: 10.1083/jcb.50.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Melish M. E., Glasgow L. A. The staphylococcal scalded-skin syndrome. N Engl J Med. 1970 May 14;282(20):1114–1119. doi: 10.1056/NEJM197005142822002. [DOI] [PubMed] [Google Scholar]
  14. Oláh I., Röhlich P. Phospholipidgranula im verhornenden Oesophagusepithel. Z Zellforsch Mikrosk Anat. 1966;73(2):205–219. [PubMed] [Google Scholar]
  15. Orwin D. F., Thomson R. W., Flower N. E. Plasma membrane differentiations of keratinizing cells of the wool follicle. I. Gap junctions. J Ultrastruct Res. 1973 Oct;45(1):1–14. doi: 10.1016/s0022-5320(73)90028-2. [DOI] [PubMed] [Google Scholar]
  16. Schreiner E., Wolff K. Die Permeabilität des epidermalen Intercellularraumes für kleinmolekulares protein. Ergebnisse elektronenmikroskopisch-cytochemischer Untersuchungen mit Peroxidase als Markierungssubstanz. Arch Klin Exp Dermatol. 1969;235(1):78–88. [PubMed] [Google Scholar]
  17. Smith D. S., Smith U., Ryan J. W. Freeze-fractured lamellar body membranes of the rat lung great alveolar cell. Tissue Cell. 1972;4(3):457–468. doi: 10.1016/s0040-8166(72)80022-3. [DOI] [PubMed] [Google Scholar]
  18. Squier C. A. The permeability of keratinized and nonkeratinized oral epithelium to horseradish peroxidase. J Ultrastruct Res. 1973 Apr;43(1):160–177. doi: 10.1016/s0022-5320(73)90076-2. [DOI] [PubMed] [Google Scholar]
  19. Weinstock M., Wilgram G. F. Fine-structural observations on the formation and enzymatic activity of keratinosomes in mouse tongue filiform papillae. J Ultrastruct Res. 1970 Feb;30(3):262–274. doi: 10.1016/s0022-5320(70)80062-4. [DOI] [PubMed] [Google Scholar]
  20. Wolff K., Holubar K. Odland-Körper (Membrane Coating Granules, Keratinosomen) als epidermale Lysosomen. Ein elektronenmikroskopisch-cytochemischer Beitrag zum Verhornungsprozess der Haut. Arch Klin Exp Dermatol. 1967;231(1):1–19. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES