Abstract
We have examined the role of 4-thiouridine in the responses of Salmonella typhimurium to near-UV irradiation. Mutants lacking 4-thiouridine (nuv) and mutants defective in the synthesis of ppGpp (guanosine 5'-diphosphate-3'-diphosphate) (relA) were found to be sensitive to killing by near-UV. Near-UV induced the synthesis of a set of proteins that were not induced in the nuv mutant. Some of these proteins were identified as oxidative defense proteins, and others were identified as ppGpp-inducible proteins. Over 100-fold increases in ApppGpp (adenosine 5', 5"'-triphosphoguanosine-3"'-diphosphate, the adenylylated form of ppGpp) were observed in wild-type cells after near-UV irradiation but not in the 4-thiouridine-deficient mutant. These data support a model in which ppGpp and ApppGpp, a dinucleotide proposed to be synthesized by tRNA-aminoacyl synthetases as a response to the cross-linking of 4-thiouridine in tRNA by near-UV, induce the synthesis of proteins necessary for resistance to near-UV irradiation.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker J. C., Jacobson M. K. Determination of diadenosine 5',5''',-P1,P4-tetraphosphate levels in cultured mammalian cells. Anal Biochem. 1984 Sep;141(2):451–460. doi: 10.1016/0003-2697(84)90070-8. [DOI] [PubMed] [Google Scholar]
- Blanchetot A., Hajnsdorf E., Favre A. Metabolism of tRNA in near-ultraviolet-illuminated Escherichia coli. The tRNA repair hypothesis. Eur J Biochem. 1984 Mar 15;139(3):547–552. doi: 10.1111/j.1432-1033.1984.tb08040.x. [DOI] [PubMed] [Google Scholar]
- Bochner B. R., Lee P. C., Wilson S. W., Cutler C. W., Ames B. N. AppppA and related adenylylated nucleotides are synthesized as a consequence of oxidation stress. Cell. 1984 May;37(1):225–232. doi: 10.1016/0092-8674(84)90318-0. [DOI] [PubMed] [Google Scholar]
- Bochner B. R., Zylicz M., Georgopoulos C. Escherichia coli DnaK protein possesses a 5'-nucleotidase activity that is inhibited by AppppA. J Bacteriol. 1986 Nov;168(2):931–935. doi: 10.1128/jb.168.2.931-935.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boehm D. E., Vincent K., Brown O. R. Oxygen and toxicity inhibition of amino acid biosynthesis. Nature. 1976 Jul 29;262(5567):418–420. doi: 10.1038/262418a0. [DOI] [PubMed] [Google Scholar]
- Brown O. R., Seither R. L. Oxygen and redox-active drugs: shared toxicity sites. Fundam Appl Toxicol. 1983 Jul-Aug;3(4):209–214. doi: 10.1016/s0272-0590(83)80127-4. [DOI] [PubMed] [Google Scholar]
- Cashel M. The control of ribonucleic acid synthesis in Escherichia coli. IV. Relevance of unusual phosphorylated compounds from amino acid-starved stringent strains. J Biol Chem. 1969 Jun 25;244(12):3133–3141. [PubMed] [Google Scholar]
- Christman M. F., Morgan R. W., Jacobson F. S., Ames B. N. Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell. 1985 Jul;41(3):753–762. doi: 10.1016/s0092-8674(85)80056-8. [DOI] [PubMed] [Google Scholar]
- Demple B., Halbrook J. Inducible repair of oxidative DNA damage in Escherichia coli. Nature. 1983 Aug 4;304(5925):466–468. doi: 10.1038/304466a0. [DOI] [PubMed] [Google Scholar]
- Favre A., Hajnsdorf E., Thiam K., Caldeira de Araujo A. Mutagenesis and growth delay induced in Escherichia coli by near-ultraviolet radiations. Biochimie. 1985 Mar-Apr;67(3-4):335–342. doi: 10.1016/s0300-9084(85)80076-6. [DOI] [PubMed] [Google Scholar]
- Favre A., Michelson A. M., Yaniv M. Photochemistry of 4-thiouridine in Escherichia coli transfer RNA1Val. J Mol Biol. 1971 May 28;58(1):367–379. doi: 10.1016/0022-2836(71)90252-x. [DOI] [PubMed] [Google Scholar]
- Gallant J. A. Stringent control in E. coli. Annu Rev Genet. 1979;13:393–415. doi: 10.1146/annurev.ge.13.120179.002141. [DOI] [PubMed] [Google Scholar]
- Goerlich O., Foeckler R., Holler E. Mechanism of synthesis of adenosine(5')tetraphospho(5')adenosine (AppppA) by aminoacyl-tRNA synthetases. Eur J Biochem. 1982 Aug;126(1):135–142. doi: 10.1111/j.1432-1033.1982.tb06757.x. [DOI] [PubMed] [Google Scholar]
- Hajnsdorf E., Favre A. Metabolism of tRNAs in growing cells of Escherichia coli illuminated with near-ultraviolet light. Photochem Photobiol. 1986 Feb;43(2):157–164. doi: 10.1111/j.1751-1097.1986.tb09508.x. [DOI] [PubMed] [Google Scholar]
- Hilderman R. H., Ortwerth B. J. A preferential role for lysyl-tRNA4 in the synthesis of diadenosine 5',5'''-P1,P4-tetraphosphate by an arginyl-tRNA synthetase-lysyl-tRNA synthetase complex from rat liver. Biochemistry. 1987 Mar 24;26(6):1586–1591. doi: 10.1021/bi00380a015. [DOI] [PubMed] [Google Scholar]
- Lang H., Riesenberg D., Zimmer C., Bergter F. Fluence-rate dependence of monophotonic reactions of nucleic acids in vitro and in vivo. Photochem Photobiol. 1986 Nov;44(5):565–570. doi: 10.1111/j.1751-1097.1986.tb04710.x. [DOI] [PubMed] [Google Scholar]
- Lee P. C., Bochner B. R., Ames B. N. AppppA, heat-shock stress, and cell oxidation. Proc Natl Acad Sci U S A. 1983 Dec;80(24):7496–7500. doi: 10.1073/pnas.80.24.7496. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee P. C., Bochner B. R., Ames B. N. Diadenosine 5',5"'-P1,P4-tetraphosphate and related adenylylated nucleotides in Salmonella typhimurium. J Biol Chem. 1983 Jun 10;258(11):6827–6834. [PubMed] [Google Scholar]
- Lipsett M. N. Enzymes producing 4-thiouridine in Escherichia coli tRNA: approximate chromosomal locations of the genes and enzyme activities in a 4-thiouridine-deficient mutant. J Bacteriol. 1978 Sep;135(3):993–997. doi: 10.1128/jb.135.3.993-997.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morgan R. W., Christman M. F., Jacobson F. S., Storz G., Ames B. N. Hydrogen peroxide-inducible proteins in Salmonella typhimurium overlap with heat shock and other stress proteins. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8059–8063. doi: 10.1073/pnas.83.21.8059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
- O'Farrell P. H. The suppression of defective translation by ppGpp and its role in the stringent response. Cell. 1978 Jul;14(3):545–557. doi: 10.1016/0092-8674(78)90241-6. [DOI] [PubMed] [Google Scholar]
- Peak J. G., Peak M. J. Lethality in repair-proficient Escherichia coli after 365 nm ultraviolet light irradiation is dependent on fluence rate. Photochem Photobiol. 1982 Jul;36(1):103–105. doi: 10.1111/j.1751-1097.1982.tb04348.x. [DOI] [PubMed] [Google Scholar]
- Peak M. J., Peak J. G., Nerad L. The role of 4-thiouridine in lethal effects and in DNA backbone breakage caused by 334 nm ultraviolet light in Escherichia coli. Photochem Photobiol. 1983 Feb;37(2):169–172. doi: 10.1111/j.1751-1097.1983.tb04453.x. [DOI] [PubMed] [Google Scholar]
- Pedersen S., Bloch P. L., Reeh S., Neidhardt F. C. Patterns of protein synthesis in E. coli: a catalog of the amount of 140 individual proteins at different growth rates. Cell. 1978 May;14(1):179–190. doi: 10.1016/0092-8674(78)90312-4. [DOI] [PubMed] [Google Scholar]
- Peters J., Jagger J. Inducible repair of near-UV radiation lethal damage in E. coli. Nature. 1981 Jan 15;289(5794):194–195. doi: 10.1038/289194a0. [DOI] [PubMed] [Google Scholar]
- Plateau P., Fromant M., Blanquet S. Heat shock and hydrogen peroxide responses of Escherichia coli are not changed by dinucleoside tetraphosphate hydrolase overproduction. J Bacteriol. 1987 Aug;169(8):3817–3820. doi: 10.1128/jb.169.8.3817-3820.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramabhadran T. V., Fossum T., Jagger J. Escherichia coli mutant lacking 4-thiouridine in its transfer ribonucleic acid. J Bacteriol. 1976 Nov;128(2):671–672. doi: 10.1128/jb.128.2.671-672.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramabhadran T. V., Jagger J. Mechanism of growth delay induced in Escherichia coli by near ultraviolet radiation. Proc Natl Acad Sci U S A. 1976 Jan;73(1):59–63. doi: 10.1073/pnas.73.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramabhadran T. V. Method for the isolation of Escherichia coli relaxed mutants, utilizing near-ultraviolet irradiation. J Bacteriol. 1976 Sep;127(3):1587–1589. doi: 10.1128/jb.127.3.1587-1589.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ryals J., Hsu R. Y., Lipsett M. N., Bremer H. Isolation of single-site Escherichia coli mutants deficient in thiamine and 4-thiouridine syntheses: identification of a nuvC mutant. J Bacteriol. 1982 Aug;151(2):899–904. doi: 10.1128/jb.151.2.899-904.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schweizer M. P., Olsen J. I., De N., Messner A., Walkiw I., Grant D. M. 13C NMR studies of dynamics and synthetase interaction of [4-13C]uracil-labeled Escherichia coli tRNAs. Fed Proc. 1984 Dec;43(15):2984–2986. [PubMed] [Google Scholar]
- Stephens J. C., Artz S. W., Ames B. N. Guanosine 5'-diphosphate 3'-diphosphate (ppGpp): positive effector for histidine operon transcription and general signal for amino-acid deficiency. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4389–4393. doi: 10.1073/pnas.72.11.4389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thiam K., Favre A. Role of the stringent response in the expression and mechanism of near-ultraviolet induced growth delay. Eur J Biochem. 1984 Nov 15;145(1):137–142. doi: 10.1111/j.1432-1033.1984.tb08532.x. [DOI] [PubMed] [Google Scholar]
- Thomas G., Favre A. 4-Thiouridine triggers both growth delay induced by near-ultraviolet light and photoprotection. Eur J Biochem. 1980 Dec;113(1):67–74. doi: 10.1111/j.1432-1033.1980.tb06140.x. [DOI] [PubMed] [Google Scholar]
- Tosa T., Pizer L. I. Biochemical bases for the antimetabolite action of L-serine hydroxamate. J Bacteriol. 1971 Jun;106(3):972–982. doi: 10.1128/jb.106.3.972-982.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsai S. C., Jagger J. The roles of the rel+ gene and of 4-thiouridine in killing and photoprotection of Escherichia coli by near-ultraviolet radiation. Photochem Photobiol. 1981 Jun;33(6):825–834. doi: 10.1111/j.1751-1097.1981.tb05499.x. [DOI] [PubMed] [Google Scholar]
- Tuveson R. W., Sammartano L. J. Sensitivity of hemA mutant Escherichia coli cells to inactivation by near-UV light depends on the level of supplementation with delta-aminolevulinic acid. Photochem Photobiol. 1986 Jun;43(6):621–626. doi: 10.1111/j.1751-1097.1986.tb05637.x. [DOI] [PubMed] [Google Scholar]
- VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]
- VanBogelen R. A., Kelley P. M., Neidhardt F. C. Differential induction of heat shock, SOS, and oxidation stress regulons and accumulation of nucleotides in Escherichia coli. J Bacteriol. 1987 Jan;169(1):26–32. doi: 10.1128/jb.169.1.26-32.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yaniv M., Chestier A., Gros F., Favre A. Biological activity of irradiated tRNA Val containing a 4-thiouridine-cytosine dimer. J Mol Biol. 1971 May 28;58(1):381–388. doi: 10.1016/0022-2836(71)90253-1. [DOI] [PubMed] [Google Scholar]