Abstract
Thioredoxin was isolated from a photosynthetic purple nonsulfur bacterium, Rhodospirillum rubrum, and its primary structure was determined by high-performance tandem mass spectrometry. The sequence identity of R. rubrum thioredoxin to Escherichia coli thioredoxin was intermediate to those of the Chlorobium thiosulfatophilum and Chromatium vinosum proteins. The results indicate that R. rubrum has an NADP-thioredoxin system similar to that of other photosynthetic purple bacteria.
Full text
PDF


Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Buchanan B. B., Evans M. C., Arnon D. I. Ferredoxin-dependent carbon assimilation in Rhodospirillum rubrum. Arch Mikrobiol. 1967;59(1):32–40. doi: 10.1007/BF00406314. [DOI] [PubMed] [Google Scholar]
- Clement-Metral J. D., Hög J. O., Holmgren A. Characterization of the thioredoxin system in the facultative phototroph Rhodobacter sphaeroides Y. Eur J Biochem. 1986 Nov 17;161(1):119–126. doi: 10.1111/j.1432-1033.1986.tb10131.x. [DOI] [PubMed] [Google Scholar]
- Gleason F. K., Whittaker M. M., Holmgren A., Jörnvall H. The primary structure of thioredoxin from the filamentous cyanobacterium Anabaena sp. 7119. J Biol Chem. 1985 Aug 15;260(17):9567–9573. [PubMed] [Google Scholar]
- Holmgren A. Thioredoxin. Annu Rev Biochem. 1985;54:237–271. doi: 10.1146/annurev.bi.54.070185.001321. [DOI] [PubMed] [Google Scholar]
- Ip S. M., Rowell P., Aitken A., Stewart W. D. Purification and characterization of thioredoxin from the N2-fixing cyanobacterium Anabaena cylindrica. Eur J Biochem. 1984 Jun 15;141(3):497–504. doi: 10.1111/j.1432-1033.1984.tb08220.x. [DOI] [PubMed] [Google Scholar]
- Johnson R. S., Biemann K. The primary structure of thioredoxin from Chromatium vinosum determined by high-performance tandem mass spectrometry. Biochemistry. 1987 Mar 10;26(5):1209–1214. doi: 10.1021/bi00379a001. [DOI] [PubMed] [Google Scholar]
- Johnson R. S., Martin S. A., Biemann K., Stults J. T., Watson J. T. Novel fragmentation process of peptides by collision-induced decomposition in a tandem mass spectrometer: differentiation of leucine and isoleucine. Anal Chem. 1987 Nov 1;59(21):2621–2625. doi: 10.1021/ac00148a019. [DOI] [PubMed] [Google Scholar]
- Johnson T. C., Crawford N. A., Buchanan B. B. Thioredoxin system of the photosynthetic anaerobe Chromatium vinosum. J Bacteriol. 1984 Jun;158(3):1061–1069. doi: 10.1128/jb.158.3.1061-1069.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maeda K., Tsugita A., Dalzoppo D., Vilbois F., Schürmann P. Further characterization and amino acid sequence of m-type thioredoxins from spinach chloroplasts. Eur J Biochem. 1986 Jan 2;154(1):197–203. doi: 10.1111/j.1432-1033.1986.tb09379.x. [DOI] [PubMed] [Google Scholar]
- Mathews W. R., Johnson R. S., Cornwell K. L., Johnson T. C., Buchanan B. B., Biemann K. Mass spectrometrically derived amino acid sequence of thioredoxin from Chlorobium, an evolutionarily prominent photosynthetic bacterium. J Biol Chem. 1987 Jun 5;262(16):7537–7545. [PubMed] [Google Scholar]
- Meng M., Hogenkamp H. P. Purification, characterization, and amino acid sequence of thioredoxin from Corynebacterium nephridii. J Biol Chem. 1981 Sep 10;256(17):9174–9182. [PubMed] [Google Scholar]
- Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
