Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1977 Jun 1;73(3):548–560. doi: 10.1083/jcb.73.3.548

Release of spectrin-free vesicles from human erythrocytes during ATP depletion: 1. characterization of spectrin-free vesicles

HU Lutz, SC Liu, J Palek
PMCID: PMC2111411  PMID: 873988

Abstract

Human erythrocytes incubated without glucose at 37 degrees C (in vitro aging) release spectrin-free vesicles after 12 or more hours. The release of vesicles is dependent upon ATP depletion. If the endogenous level of ATP is maintained, vesicle release is completely inhibited up to 54 h. Vesicle release is independent of hemolysis because in vitro aged cells and cells that maintain their ATP levels lose identical amounts of hemoglobin up to 45 h. 93 percent of all membrane particles released constitute a uniform population of spheres with a diameter of 185 +/- 23nm. These vesicles are of slightly varying densities due to varying contents of hemoglobin. Vesicles contain half the amount of membrane protein that is found in intact membranes when referred to the content of phospholipids phosphorus. This is primarily due to the absence of spectrin. However, their content of protein component III, glycophorin, and cholesterol remains the same as in intact membranes. Thus, the major integral membrane proteins are present in vesicles in similar quantities were surface area as in cells except for the enzyme acetylcholinesterase that is enriched up to twofold. The phospholipids composition of these vesicles is representative of the intact membrane except that the amount of phosphatidic acid is 10-fold higher and the amount of phosphatidylethanolamine is slightly lower than in erythrocytes. These results suggest a selective release of membrane domains that lack peripheral membrane proteins and are enriched in acetylcholinesterase. This release of spectrin-free vesicles from cells aged in vitro could represent an acceleration of the physiological aging process.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan D., Billah M. M., Finean J. B., Michell R. H. Release of diacylglycerol-enriched vesicles from erythrocytes with increased intracellular (Ca2+). Nature. 1976 May 6;261(5555):58–60. doi: 10.1038/261058a0. [DOI] [PubMed] [Google Scholar]
  2. Allan D., Watts R., Michell R. H. Production of 1,2-diacylglycerol and phosphatidate in human erythrocytes treated with calcium ions and ionophore A23187. Biochem J. 1976 May 15;156(2):225–232. doi: 10.1042/bj1560225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bellhorn M. B., Blumenfeld O. O., Gallop P. M. Acetylcholinesterase of the human erythrocyte membrane. Biochem Biophys Res Commun. 1970 Apr 24;39(2):267–273. doi: 10.1016/0006-291x(70)90788-6. [DOI] [PubMed] [Google Scholar]
  4. Bessis M., Mandon P. La microsphérulation et les formes myéliniques des globules rouges. Examen comparé au microscope électronique à balayage et à transmission. Nouv Rev Fr Hematol. 1972 Jul-Aug;12(4):443–454. [PubMed] [Google Scholar]
  5. Broekhuyse R. M. Quantitative two-dimensional thin-layer chromatography of blood phospholipids. Clin Chim Acta. 1969 Mar;23(3):457–461. doi: 10.1016/0009-8981(69)90349-0. [DOI] [PubMed] [Google Scholar]
  6. COURCHAINE A. J., MILLER W. H., STEIN D. B., Jr Rapid semi-micro procedure for estimating free and total cholesterol. Clin Chem. 1959 Dec;5:609–614. [PubMed] [Google Scholar]
  7. CROSBY W. H., FURTH F. W. A modification of the benzidine method for measurement of hemoglobin in plasma and urine. Blood. 1956 Apr;11(4):380–383. [PubMed] [Google Scholar]
  8. DANON D., MARIKOVSKY V. DETERMINATION OF DENSITY DISTRIBUTION OF RED CELL POPULATION. J Lab Clin Med. 1964 Oct;64:668–674. [PubMed] [Google Scholar]
  9. Detraglia M., Cook F. B., Stasiw D. M., Cerny L. C. Erythrocyte fragility in aging. Biochim Biophys Acta. 1974 Apr 29;345(2):213–219. doi: 10.1016/0005-2736(74)90259-4. [DOI] [PubMed] [Google Scholar]
  10. ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
  11. ESSNER E. An electron microscopic study of erythrophagocytosis. J Biophys Biochem Cytol. 1960 Apr;7:329–334. doi: 10.1083/jcb.7.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Elgsaeter A., Branton D. Intramembrane particle aggregation in erythrocyte ghosts. I. The effects of protein removal. J Cell Biol. 1974 Dec;63(3):1018–1036. doi: 10.1083/jcb.63.3.1018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fortes P. A., Ellory J. C. Asymmetric membrane expansion and modification of active and passive cation permeability of human red cells by the fluorescent probe 1-anilino-8-napththalene sulfonate. Biochim Biophys Acta. 1975 Nov 17;413(1):65–78. doi: 10.1016/0005-2736(75)90059-0. [DOI] [PubMed] [Google Scholar]
  14. Fujita S., Cleve H. Isolation and partial characterization of two minor glycoproteins from human erythrocyte membranes. Biochim Biophys Acta. 1975 Mar 13;382(2):172–180. doi: 10.1016/0005-2736(75)90175-3. [DOI] [PubMed] [Google Scholar]
  15. Furthmayr H., Tomita M., Marchesi V. T. Fractionation of the major sialoglycopeptides of the human red blood cell membrane. Biochem Biophys Res Commun. 1975 Jul 8;65(1):113–121. doi: 10.1016/s0006-291x(75)80068-4. [DOI] [PubMed] [Google Scholar]
  16. Greenwalt T. J., Steane E. A. Quantitative haemagglutination. 4. Effect of neuraminidase treatment on agglutination by blood group antibodies. Br J Haematol. 1973 Aug;25(2):207–215. doi: 10.1111/j.1365-2141.1973.tb01732.x. [DOI] [PubMed] [Google Scholar]
  17. Herz F., Kaplan E. A review: human erythrocyte acetylcholinesterase. Pediatr Res. 1973 Apr;7(4):204–214. doi: 10.1203/00006450-197304000-00024. [DOI] [PubMed] [Google Scholar]
  18. JANDL J. H., ENGLE L. K., ALLEN D. W. Oxidative hemolysis and precipitation of hemoglobin. I. Heinz body anemias as an acceleration of red cell aging. J Clin Invest. 1960 Dec;39:1818–1836. doi: 10.1172/JCI104206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. LOWRY O. H., PASSONNEAU J. V., HASSELBERGER F. X., SCHULZ D. W. EFFECT OF ISCHEMIA ON KNOWN SUBSTRATES AND COFACTORS OF THE GLYCOLYTIC PATHWAY IN BRAIN. J Biol Chem. 1964 Jan;239:18–30. [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. La Celle P. L., Kirkpatrick F. H., Udkow M. P., Arkin B. Membrane fragmentation and Ca ++ -membrane interaction: potential mechanisms of shape change in the senescent red cell. Nouv Rev Fr Hematol. 1972 Nov-Dec;12(6):789–798. [PubMed] [Google Scholar]
  22. Lutz H. U., Barber R., McGuire R. F. Glycoprotein-enriched vesicles from sheep erythrocyte ghosts obtained by spontaneous vesiculation. J Biol Chem. 1976 Jun 10;251(11):3500–3510. [PubMed] [Google Scholar]
  23. Neville D. M., Jr Molecular weight determination of protein-dodecyl sulfate complexes by gel electrophoresis in a discontinuous buffer system. J Biol Chem. 1971 Oct 25;246(20):6328–6334. [PubMed] [Google Scholar]
  24. PONDER E., PONDER R. V. OBSERVATIONS QUANTITATIVES SUR LA PRODUCTION DE FORMES MY'ELINIQUES PAR LES STROMAS DE GLOBULES ROUGES. Nouv Rev Fr Hematol. 1963 Sep-Oct;3:553–557. [PubMed] [Google Scholar]
  25. PRITCHARD J. A. Erythrocyte age and cholinesterase activity. Am J Physiol. 1949 Jul;158(1):72–76. doi: 10.1152/ajplegacy.1949.158.1.72. [DOI] [PubMed] [Google Scholar]
  26. Sears D. A. Prehemolytic changes in membrane protein of incubated human erythrocytes. J Lab Clin Med. 1973 Nov;82(5):719–726. [PubMed] [Google Scholar]
  27. Segrest J. P., Kahane I., Jackson R. L., Marchesi V. T. Major glycoprotein of the human erythrocyte membrane: evidence for an amphipathic molecular structure. Arch Biochem Biophys. 1973 Mar;155(1):167–183. doi: 10.1016/s0003-9861(73)80019-0. [DOI] [PubMed] [Google Scholar]
  28. Sheetz M. P., Singer S. J. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4457–4461. doi: 10.1073/pnas.71.11.4457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tuech J. K., Morrison M. Human erythrocyte membrane sialoglycoproteins: a study of interconversion. Biochem Biophys Res Commun. 1974 Jul 10;59(1):352–360. doi: 10.1016/s0006-291x(74)80214-7. [DOI] [PubMed] [Google Scholar]
  30. WESTERMAN M. P., PIERCE L. E., JENSEN W. N. ERYTHROCYTE LIPIDS: A COMPARISON OF NORMAL YOUNG AND NORMAL OLD POPULATIONS. J Lab Clin Med. 1963 Sep;62:394–400. [PubMed] [Google Scholar]
  31. Walter H., Selby F. W. Counter-current distribution of red blood cells of slightly different ages. Biochim Biophys Acta. 1966 Jan 4;112(1):146–153. doi: 10.1016/s0926-6585(96)90016-3. [DOI] [PubMed] [Google Scholar]
  32. Weed R. I., Bowdler A. J. Metabolic dependence of the critical hemolytic volume of human erythrocytes: relationship to osmotic fragility and autohemolysis in hereditary spherocytosis and normal red cells. J Clin Invest. 1966 Jul;45(7):1137–1149. doi: 10.1172/JCI105420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Weed R. I., LaCelle P. L., Merrill E. W. Metabolic dependence of red cell deformability. J Clin Invest. 1969 May;48(5):795–809. doi: 10.1172/JCI106038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Weed R. I., Reed C. F. Membrane alterations leading to red cell destruction. Am J Med. 1966 Nov;41(5):681–698. doi: 10.1016/0002-9343(66)90030-1. [DOI] [PubMed] [Google Scholar]
  35. Yaari A. Mobility of human red blood cells of different age groups in an electric field. Blood. 1969 Feb;33(2):159–163. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES