Abstract
The intracellular transport of glycoproteins pulse-labeled in vitro with tritiated leucine and galactose in the surface mucous lining cells (SMC) of the fundus of the rat stomach was studied by electron microscope autoradiography. The SMC survive for several hours in pieces of the fundus incubated in a bicarbonate-buffered medium. The SMC have a normal ultrastructure for at least 4 h of incubation. Kinetic activity is normal for at least 5 h, as demonstrated by the normal nuclear incorporation of tritiated thymidine; The SMC incorporate labeled leucine and galactose at normal rates up to 4 h and 6 h, respectively. In contrast to the SMC, the cells of the gastric glands show signs of degeneration within 1 h after the start of incubation. In the SMC the secretory protein forms a smaller part of the total protein synthesized than in other secretory cells studied. The intracellular tranpsort of the leucine-labeled moiety of the glycoproteins follows the normal pathway. The RER loses 35% of its transportable labeled protein within 30 min. The Golgi complex is maximally labeled at 40 min and the mucous granules after 120 min. Galactose is attached to the glycoproteins mainly in the Golgi complex. Glycoproteins are not secreted within 2 h after synthesis of their protein moiety.
Full Text
The Full Text of this article is available as a PDF (4.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Babad H., Ben-Zvi R., Bdolah A., Schramm M. The mechanism of enzyme secretion by the cell. 4. Effects of inducers, substrates and inhibitors on amylase secretion by rat parotid slices. Eur J Biochem. 1967 Mar;1(1):96–101. doi: 10.1111/j.1432-1033.1967.tb00049.x. [DOI] [PubMed] [Google Scholar]
- Bergeron J. J., Ehrenreich J. H., Siekevitz P., Palade G. E. Golgi fractions prepared from rat liver homogenates. II. Biochemical characterization. J Cell Biol. 1973 Oct;59(1):73–88. doi: 10.1083/jcb.59.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CARO L. G., PALADE G. E. PROTEIN SYNTHESIS, STORAGE, AND DISCHARGE IN THE PANCREATIC EXOCRINE CELL. AN AUTORADIOGRAPHIC STUDY. J Cell Biol. 1964 Mar;20:473–495. doi: 10.1083/jcb.20.3.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Castle J. D., Jamieson J. D., Palade G. E. Radioautographic analysis of the secretory process in the parotid acinar cell of the rabbit. J Cell Biol. 1972 May;53(2):290–311. doi: 10.1083/jcb.53.2.290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cunningham W. P., Mollenhauer H. H., Nyquist S. E. Isolation of germ cell Golgi apparatus from seminiferous tubules of rat testes. J Cell Biol. 1971 Oct;51(1):273–285. doi: 10.1083/jcb.51.1.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haddad A. In vivo incorporation of 3 H-galactose by thyroid follicular cells of the rat, as shown by electron microscopic radioautography. J Histochem Cytochem. 1972 Mar;20(3):220–224. doi: 10.1177/20.3.220. [DOI] [PubMed] [Google Scholar]
- Hoedemaeker P. J., Abels J., Wachters J. J., Arends A., Nieweg H. O. Further investigations about the site of production of Castle's gastric intrinsic factor. Lab Invest. 1966 Jul;15(7):1163–1173. [PubMed] [Google Scholar]
- Howell S. L., Whitfield M. Synthesis and secretion of growth hormone in the rat anterior pituitary. I. The intracellular pathway, its time course and energy requirements. J Cell Sci. 1973 Jan;12(1):1–21. doi: 10.1242/jcs.12.1.1. [DOI] [PubMed] [Google Scholar]
- Jamieson J. D., Palade G. E. Intracellular transport of secretory proteins in the pancreatic exocrine cell. II. Transport to condensing vacuoles and zymogen granules. J Cell Biol. 1967 Aug;34(2):597–615. doi: 10.1083/jcb.34.2.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson L. R., Aures D., Yuen L. Pentagastrin-induced stimulation of protein synthesis in the gastrointestinal tract. Am J Physiol. 1969 Jul;217(1):251–254. doi: 10.1152/ajplegacy.1969.217.1.251. [DOI] [PubMed] [Google Scholar]
- KUROSUMI K. Electron microscopic analysis of the secretion mechanism. Int Rev Cytol. 1961;11:1–124. doi: 10.1016/s0074-7696(08)62713-8. [DOI] [PubMed] [Google Scholar]
- Kent P. W., Allen A. The biosynthesis of intestinal mucins. The effect of salicylate on glycoprotein biosynthesis by sheep colonic and human gastric mucosal tissues in vitro. Biochem J. 1968 Feb;106(3):645–658. doi: 10.1042/bj1060645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Labrie F., Pelletier G., Lemay A., Borgeat P., Barden N., Dupont A., Savary M., Côté J., Boucher R. Control of protein synthesis in anterior pituitary gland. Acta Endocrinol Suppl (Copenh) 1973;180:301–340. doi: 10.1530/acta.0.074s301. [DOI] [PubMed] [Google Scholar]
- Lettré H., Paweletz N. Probleme der elektronenmikroskopischen Autoradiographie. Naturwissenschaften. 1966 Jun;53(11):268–271. doi: 10.1007/BF00621640. [DOI] [PubMed] [Google Scholar]
- MANCHESTER K. L., WOOL I. G. INSULIN AND INCORPORATION OF AMINO ACIDS INTO PROTEIN OF MUSCLE. 1. ACCUMULATION AND INCORPORATION STUDIES WITH THE PERFUSED RAT HEART. Biochem J. 1963 Nov;89:202–209. doi: 10.1042/bj0890202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neutra M., Leblond C. P. Radioautographic comparison of the uptake of galactose-H and glucose-H3 in the golgi region of various cells secreting glycoproteins or mucopolysaccharides. J Cell Biol. 1966 Jul;30(1):137–150. doi: 10.1083/jcb.30.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parkhouse R. M., Melchers F. Biosynthesis of the carbohydrate portions of immunoglobulin M. Biochem J. 1971 Nov;125(1):235–240. doi: 10.1042/bj1250235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riordan J. R., Mitranic M., Slavik M., Moscarello M. A. The incorporation of L-(14C) fucose into glycoprotein fractions of liver plasma membranes. FEBS Lett. 1974 Oct 15;47(2):248–251. doi: 10.1016/0014-5793(74)81022-7. [DOI] [PubMed] [Google Scholar]
- Rohr H. P., Schmalbeck J., Feldhege A. Elektronenmikroskopisch-autoradiographische Untersuchungen über Eiweiss-Synthese in der Brunnerschen Drüse der Maus. Z Zellforsch Mikrosk Anat. 1967;80(2):183–204. [PubMed] [Google Scholar]
- Samloff I. M. Cellular localization of group I pepsinogens in human gastric mucosa by immunofluorescence. Gastroenterology. 1971 Aug;61(2):185–188. [PubMed] [Google Scholar]
- Schrager J., Oates M. D. The isolation and partial characterisation of the principal gastric glycoprotein of 'visible' mucus. Digestion. 1971;4(1):1–12. doi: 10.1159/000197091. [DOI] [PubMed] [Google Scholar]
- Snary D., Allen A. Studies on gastric mucoproteins. The isolation and characterization of the mucoprotein of the water-soluble mucus from pig cardiac gastric mucosa. Biochem J. 1971 Aug;123(5):845–853. doi: 10.1042/bj1230845. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snary D., Allen A. Studies on gastric mucoproteins. The production of radioactive mucoproteins by pig gastric mucosal scrapings in vitro. Biochem J. 1972 Apr;127(3):577–587. doi: 10.1042/bj1270577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strous G. J., Kramer M. F. Glycoprotein synthesis in gastric epithelial cells of the rat. Properties of microsomal glycoprotein glycosyltransferases. Biochim Biophys Acta. 1976 Nov 18;451(1):201–211. doi: 10.1016/0304-4165(76)90271-3. [DOI] [PubMed] [Google Scholar]
- Sukeno T., Herp A., Pigman W. Enzymic characterization of Golgi-rich fractions from rat submaxillary-sublingual glands. Eur J Biochem. 1972 Jun 9;27(3):419–424. doi: 10.1111/j.1432-1033.1972.tb01854.x. [DOI] [PubMed] [Google Scholar]
- Sutherland E. W., 3rd, Zimmerman D. H., Kern M. Synthesis and secretion of gammaglobulin by lymph node cells: the acquisition of carbohydrate residues of immunoglobulin in relation to interchain disulfide bond formation (heavy and light chains-murine myeloma-mannose-glucosamine-galactose). Proc Natl Acad Sci U S A. 1972 Jan;69(1):167–171. doi: 10.1073/pnas.69.1.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vrensen G. F. Some new aspects of efficiency of electron microscopic autoradiography with tritium. J Histochem Cytochem. 1970 Apr;18(4):278–290. doi: 10.1177/18.4.278. [DOI] [PubMed] [Google Scholar]
- Wattel W., Geuze J. J., de Rooij D. G. Ultrastructural and carbohydrate histochemical studies on the differentiation and renewal of mucous cells in the rat gastric fundus. Cell Tissue Res. 1977 Jan 24;176(4):445–462. doi: 10.1007/BF00231401. [DOI] [PubMed] [Google Scholar]
- Weinstock A., Leblond C. P. Elaboration of the matrix glycoprotein of enamel by the secretory ameloblasts of the rat incisor as revealed by radioautography after galactose- 3 H injection. J Cell Biol. 1971 Oct;51(1):26–51. doi: 10.1083/jcb.51.1.26. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whur P., Herscovics A., Leblond C. P. Radioautographic visualization of the incorporation of galactose-3H and mannose-3H by rat thyroids in vitro in relation to the stages of thyroglobulin synthesis. J Cell Biol. 1969 Nov;43(2):289–311. doi: 10.1083/jcb.43.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yasuda K., Suzuki T., Takano K. Localization of pepsin in the stomach, revealed by fluorescent antibody technique. Okajimas Folia Anat Jpn. 1966 Dec;42(6):355–367. doi: 10.2535/ofaj1936.42.6_355. [DOI] [PubMed] [Google Scholar]
- Zagury D., Uhr J. W., Jamieson J. D., Palade G. E. Immunoglobulin synthesis and secretion. II. Radioautographic studies of sites of addition of carbohydrate moieties and intracellular transport. J Cell Biol. 1970 Jul;46(1):52–63. doi: 10.1083/jcb.46.1.52. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeitoun P., Duclert N., Liautaud F., Potet F., Zylberberg L. Intracellular localization of pepsinogen in guinea pig pyloric mucosa by immunohistochemistry: histochemical and electron microscopic correlated structures. Lab Invest. 1972 Aug;27(2):218–225. [PubMed] [Google Scholar]
- Ziderman D., Gompertz S., Smith Z. G., Watkins W. M. Glycosyl transferases in mammalian gastric mucosal linings. Biochem Biophys Res Commun. 1967 Oct 11;29(1):56–61. doi: 10.1016/0006-291x(67)90540-2. [DOI] [PubMed] [Google Scholar]
