Abstract
Direct measurements of the stiffness (elastic bending resistance) of demembranated sera urchin sperm flagella were made in the presence of MgATP2- and vanadate. Under these conditions, the flagellum is in a relaxed state, with a stiffness of approximately 0.9 x 10(-21) N m2, which is approximately 5% of the stiffness obtained in the rigor state in the absence of MgATP2-. MgADP- dose not substitute for MgATP2- in producing relaxed state. A progressive inhibition of movement is observed after addition of MgATP2- to flagella preincubated with vanadate, in which new bend generation, propagation, and relaxation by straightening are distinguished, depending on the ratio of MgATP2- and vanadate. At appropriate concentrations of vanadate, increase of the velocity of bend propagation is observed at a very low concentration of MgATP2- that is not enough to induce spontaneous beating. Vanadate enhances competitive inhibition of beat frequency by MgADP- but not by ADP3-, ATP4-, or Pi. These observations, and the uncompetitive inhibition of beat frequency by vanadate, indicate that vanadate can only bind to dynein-nucleotide complexes induced by MgATP2- and MgADP-. The state accessible by MgATP2- binding must be a state in which the cross-bridges are detached and the flagellum is relaxed. The state accessible by MgADP- binding must be a cross-bridged state. Bound vanadate prevents the transition between these two states. Inhibition and relaxation by banadate in the presence of MgATP2- results from the specific affinity of vanadate for a state in which nucleotide is bound, rather than a specific affinity for the deteched state.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blum J. J., Hayes A. Effect of N-ethylmaleimide and of heat treatment on the binding of dynein to ethylenediaminetetraacetic acid extracted axonemes. Biochemistry. 1974 Oct 8;13(21):4290–4298. doi: 10.1021/bi00718a008. [DOI] [PubMed] [Google Scholar]
- Brokaw C. J. Adenosine triphosphate usage by flagella. Science. 1967 Apr 7;156(3771):76–78. doi: 10.1126/science.156.3771.76. [DOI] [PubMed] [Google Scholar]
- Brokaw C. J. Bend propagation by a sliding filament model for flagella. J Exp Biol. 1971 Oct;55(2):289–304. doi: 10.1242/jeb.55.2.289. [DOI] [PubMed] [Google Scholar]
- Brokaw C. J., Benedict B. Mechanochemical coupling in flagella. 3. Effects of some uncoupling agents on properties of the flagellar ATPase. Arch Biochem Biophys. 1971 Jan;142(1):91–100. doi: 10.1016/0003-9861(71)90262-1. [DOI] [PubMed] [Google Scholar]
- Brokaw C. J., Benedict B. Mechanochemical coupling in flagella. II. Effects of viscosity and thiourea on metabolism and motility of Ciona spermatozoa. J Gen Physiol. 1968 Aug;52(2):283–299. doi: 10.1085/jgp.52.2.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brokaw C. J. Effects of viscosity and ATP concentration on the movement of reactivated sea-urchin sperm flagella. J Exp Biol. 1975 Jun;62(3):701–719. doi: 10.1242/jeb.62.3.701. [DOI] [PubMed] [Google Scholar]
- Brokaw C. J. Flagellar movement: a sliding filament model. Science. 1972 Nov 3;178(4060):455–462. doi: 10.1126/science.178.4060.455. [DOI] [PubMed] [Google Scholar]
- Brokaw C. J., Rintala D. Computer simulation of flagellar movement. V. oscillation of cross-bridge models with an ATP-concentration-dependent rate function. J Mechanochem Cell Motil. 1977 Sep;4(3):205–232. [PubMed] [Google Scholar]
- Brokaw C. J., Simonick T. F. Mechanochemical coupling in flagella. V. Effects of viscosity on movement and ATP-dephosphorylation of Triton-demembranated sea-urchin spermatozoa. J Cell Sci. 1977 Feb;23:227–241. doi: 10.1242/jcs.23.1.227. [DOI] [PubMed] [Google Scholar]
- GIBBONS I. R. STUDIES ON THE PROTEIN COMPONENTS OF CILIA FROM TETRAHYMENA PYRIFORMIS. Proc Natl Acad Sci U S A. 1963 Nov;50:1002–1010. doi: 10.1073/pnas.50.5.1002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons B. H., Gibbons I. R. Flagellar movement and adenosine triphosphatase activity in sea urchin sperm extracted with triton X-100. J Cell Biol. 1972 Jul;54(1):75–97. doi: 10.1083/jcb.54.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons B. H., Gibbons I. R. Properties of flagellar "rigor waves" formed by abrupt removal of adenosine triphosphate from actively swimming sea urchin sperm. J Cell Biol. 1974 Dec;63(3):970–985. doi: 10.1083/jcb.63.3.970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons B. H., Gibbons I. R. The effect of partial extraction of dynein arms on the movement of reactivated sea-urchin sperm. J Cell Sci. 1973 Sep;13(2):337–357. doi: 10.1242/jcs.13.2.337. [DOI] [PubMed] [Google Scholar]
- Gibbons I. R. Chemical dissection of cilia. Arch Biol (Liege) 1965;76(2):317–352. [PubMed] [Google Scholar]
- Gibbons I. R., Cosson M. P., Evans J. A., Gibbons B. H., Houck B., Martinson K. H., Sale W. S., Tang W. J. Potent inhibition of dynein adenosinetriphosphatase and of the motility of cilia and sperm flagella by vanadate. Proc Natl Acad Sci U S A. 1978 May;75(5):2220–2224. doi: 10.1073/pnas.75.5.2220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons I. R., Fronk E. A latent adenosine triphosphatase form of dynein 1 from sea urchin sperm flagella. J Biol Chem. 1979 Jan 10;254(1):187–196. [PubMed] [Google Scholar]
- Gibbons I. R., Fronk E. Some properties of bound and soluble dynein from sea urchin sperm flagella. J Cell Biol. 1972 Aug;54(2):365–381. doi: 10.1083/jcb.54.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons I. R. The molecular basis of flagellar motility in sea urchin spermatozoa. Soc Gen Physiol Ser. 1975;30:207–232. [PubMed] [Google Scholar]
- Goldstein S. F. Starting transients in sea urchin sperm flagella. J Cell Biol. 1979 Jan;80(1):61–68. doi: 10.1083/jcb.80.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodno C. C. Inhibition of myosin ATPase by vanadate ion. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2620–2624. doi: 10.1073/pnas.76.6.2620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUXLEY A. F. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:255–318. [PubMed] [Google Scholar]
- Holwill M. E. Kinetic studies of the flagellar movement of sea-urchin spermatozoa. J Exp Biol. 1969 Feb;50(1):203–222. doi: 10.1242/jeb.50.1.203. [DOI] [PubMed] [Google Scholar]
- Hoshino M. Interactions of Tetrahymena dynein with microtubule protein. Tubulin-induced stimulation of dynein ATPase activity. Biochim Biophys Acta. 1977 Oct 12;462(1):49–62. doi: 10.1016/0005-2728(77)90188-8. [DOI] [PubMed] [Google Scholar]
- Kobayashi T., Martensen T., Nath J., Flavin M. Inhibition of dynein ATPase by vanadate, and its possible use as a probe for the role of dynein in cytoplasmic motility. Biochem Biophys Res Commun. 1978 Apr 28;81(4):1313–1318. doi: 10.1016/0006-291x(78)91279-2. [DOI] [PubMed] [Google Scholar]
- Lienhard G. E., Secemski I. I. P 1 ,P 5 -Di(adenosine-5')pentaphosphate, a potent multisubstrate inhibitor of adenylate kinase. J Biol Chem. 1973 Feb 10;248(3):1121–1123. [PubMed] [Google Scholar]
- Lindemann C. B., Rudd W. G., Rikmenspoel R. The stiffness of the flagella of impaled bull sperm. Biophys J. 1973 May;13(5):437–448. doi: 10.1016/S0006-3495(73)85997-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lopez V., Stevens T., Lindquist R. N. Vanadium ion inhibition of alkaline phosphatase-catalyzed phosphate ester hydrolysis. Arch Biochem Biophys. 1976 Jul;175(1):31–38. doi: 10.1016/0003-9861(76)90482-3. [DOI] [PubMed] [Google Scholar]
- Lubliner J., Blum J. J. Analysis of form and speed of flagellar waves according to a sliding filament model. J Mechanochem Cell Motil. 1972 Aug;1(3):157–167. [PubMed] [Google Scholar]
- Mabuchi I., Shimizu T., Mabuchi Y. A biochemical study of flagellar dynein from starfish spermatozoa: protein components of the arm structure. Arch Biochem Biophys. 1976 Oct;176(2):564–576. doi: 10.1016/0003-9861(76)90200-9. [DOI] [PubMed] [Google Scholar]
- Marston S. B., Tregear R. T., Rodger C. D., Clarke M. L. Coupling between the enzymatic site of myosin and the mechanical output of muscle. J Mol Biol. 1979 Feb 25;128(2):111–126. doi: 10.1016/0022-2836(79)90121-9. [DOI] [PubMed] [Google Scholar]
- Mazia D., Schatten G., Sale W. Adhesion of cells to surfaces coated with polylysine. Applications to electron microscopy. J Cell Biol. 1975 Jul;66(1):198–200. doi: 10.1083/jcb.66.1.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okuno M., Brokaw C. J. Inhibition of movement of trition-demembranated sea-urchin sperm flagella by Mg2+, ATP4-, ADP and P1. J Cell Sci. 1979 Aug;38:105–123. doi: 10.1242/jcs.38.1.105. [DOI] [PubMed] [Google Scholar]
- Okuno M., Hiramoto Y. Mechanical stimulation of starfish sperm flagella. J Exp Biol. 1976 Oct;65(2):401–413. doi: 10.1242/jeb.65.2.401. [DOI] [PubMed] [Google Scholar]
- Rikmenspoel R. Contractile mechanisms in flagella. Biophys J. 1971 May;11(5):446–463. doi: 10.1016/S0006-3495(71)86227-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sale W. S., Gibbons I. R. Study of the mechanism of vanadate inhibition of the dynein cross-bridge cycle in sea urchin sperm flagella. J Cell Biol. 1979 Jul;82(1):291–298. doi: 10.1083/jcb.82.1.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sale W. S., Satir P. Direction of active sliding of microtubules in Tetrahymena cilia. Proc Natl Acad Sci U S A. 1977 May;74(5):2045–2049. doi: 10.1073/pnas.74.5.2045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Satir P. STUDIES ON CILIA : II. Examination of the Distal Region of the Ciliary Shaft and the Role of the Filaments in Motility. J Cell Biol. 1965 Sep 1;26(3):805–834. doi: 10.1083/jcb.26.3.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Satir P. Studies on cilia. 3. Further studies on the cilium tip and a "sliding filament" model of ciliary motility. J Cell Biol. 1968 Oct;39(1):77–94. doi: 10.1083/jcb.39.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shimizu T., Kaji K., Kimura I. Effects of p-chloromercuriphenylsulfonate on ciliary dynein adenosine triphosphatase activity of Tetrahymena pyriformis. J Biochem. 1977 Oct;82(4):1145–1153. doi: 10.1093/oxfordjournals.jbchem.a131787. [DOI] [PubMed] [Google Scholar]
- Shimizu T., Kimura I. Effects of N-ethylmaleimide on dynein adenosinetriphosphatase activity and its recombining ability with outer fibers. J Biochem. 1974 Nov;76(5):1001–1008. [PubMed] [Google Scholar]
- Summers K. E., Gibbons I. R. Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3092–3096. doi: 10.1073/pnas.68.12.3092. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahashi M., Tonomura Y. Binding of 30s dynein with the B-tubule of the outer doublet of axonemes from Tetrahymena pyriformis and adenosine triphosphate-induced dissociation of the complex. J Biochem. 1978 Dec;84(6):1339–1355. doi: 10.1093/oxfordjournals.jbchem.a132256. [DOI] [PubMed] [Google Scholar]
- Warner F. D. Cation-induced attachment of ciliary dynein cross-bridges. J Cell Biol. 1978 Jun;77(3):R19–R26. doi: 10.1083/jcb.77.3.r19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warner F. D., Mitchell D. R. Structural conformation of ciliary dynein arms and the generation of sliding forces in Tetrahymena cilia. J Cell Biol. 1978 Feb;76(2):261–277. doi: 10.1083/jcb.76.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zanetti N. C., Mitchell D. R., Warner F. D. Effects of divalent cations on dynein cross bridging and ciliary microtubule sliding. J Cell Biol. 1979 Mar;80(3):573–588. doi: 10.1083/jcb.80.3.573. [DOI] [PMC free article] [PubMed] [Google Scholar]