Abstract
Aequorin luminescence has been utilized to determine the spatial and temporal fluctuations of the free calcium ion concentration [Ca++] in Chaos carolinensis during ameboid movement, pinocytosis, and capping. The [Ca++] increases above approximately 10(-7) M during normal ameboid movement. Three types of luminescent signals are detected in cells: continuous luminescence, spontaneous pulses, and stimulated pulses. Continuous luminescence is localized in the tails of actively motile cells, and spontaneous pulses occur primarily over the anterior regions of cells. We are sometimes able to correlate the spontaneous pulses with extending pseudopods, whereas stimulated pulses are induced by mechanical damage, electrical stimulation, concanavalin A-induced capping, and pinocytosis. The localization of both distinct actin structures and sites where [Ca++] increases suggests cellular sites of contractile activity. The independent evidence from localizing actin structures and the distribution of [Ca++] can also be viewed in relation to the solation-contraction coupling hypothesis defined in vitro.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen D. G., Blinks J. R. Calcium transients in aequorin-injected frog cardiac muscle. Nature. 1978 Jun 15;273(5663):509–513. doi: 10.1038/273509a0. [DOI] [PubMed] [Google Scholar]
- Allen D. G., Blinks J. R., Prendergast F. G. Aequorin luminescence: relation of light emission to calcium concentration--a calcium-independent component. Science. 1977 Mar 11;195(4282):996–998. doi: 10.1126/science.841325. [DOI] [PubMed] [Google Scholar]
- Ashley C. C., Ridgway E. B. On the relationships between membrane potential, calcium transient and tension in single barnacle muscle fibres. J Physiol. 1970 Jul;209(1):105–130. doi: 10.1113/jphysiol.1970.sp009158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BINGLEY M., BELL L. G., JEON K. W. Pseudopod initiation and membrane depolarisation in Amoeba proteus. Exp Cell Res. 1962 Oct;28:208–209. doi: 10.1016/0014-4827(62)90329-4. [DOI] [PubMed] [Google Scholar]
- Bingley M. S. Further investigations into membrane potentials in Amoebae. Exp Cell Res. 1966 Aug;43(1):1–12. doi: 10.1016/0014-4827(66)90371-5. [DOI] [PubMed] [Google Scholar]
- Blinks J. R. Applications of calcium-sensitive photoproteins in experimental biology. Photochem Photobiol. 1978 Apr;27(4):423–432. doi: 10.1111/j.1751-1097.1978.tb07624.x. [DOI] [PubMed] [Google Scholar]
- Blinks J. R., Prendergast F. G., Allen D. G. Photoproteins as biological calcium indicators. Pharmacol Rev. 1976 Mar;28(1):1–93. [PubMed] [Google Scholar]
- Blinks J. R., Rüdel R., Taylor S. R. Calcium transients in isolated amphibian skeletal muscle fibres: detection with aequorin. J Physiol. 1978 Apr;277:291–323. doi: 10.1113/jphysiol.1978.sp012273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boucek M. M., Snyderman R. Calcium influx requirement for human neutrophil chemotaxis: inhibition by lanthanum chloride. Science. 1976 Sep 3;193(4256):905–907. doi: 10.1126/science.948752. [DOI] [PubMed] [Google Scholar]
- Brandt P. W., Freeman A. R. Plasma membrane: substructural changes correlated with electrical resistance and pinocytosis. Science. 1967 Feb 3;155(3762):582–585. doi: 10.1126/science.155.3762.582. [DOI] [PubMed] [Google Scholar]
- Braun J., Fujiwara K., Pollard T. D., Unanue E. R. Two distinct mechanisms for redistribution of lymphocyte surface macromolecules. II. Contrasting effects of local anesthetics and a calcium ionophore. J Cell Biol. 1978 Nov;79(2 Pt 1):419–426. doi: 10.1083/jcb.79.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bruce D. L., Marshall J. M., Jr Some ionic and bioelectric properties of the ameba Chaos chaos. J Gen Physiol. 1965 Sep;49(1):151–178. doi: 10.1085/jgp.49.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chapman-Andresen C. Endocytosis in freshwater amebas. Physiol Rev. 1977 Jul;57(3):371–385. doi: 10.1152/physrev.1977.57.3.371. [DOI] [PubMed] [Google Scholar]
- Christiansen R. G., Marshall J. M. A study of phagocytosis in the ameba Chaos chaos. J Cell Biol. 1965 Jun;25(3):443–457. doi: 10.1083/jcb.25.3.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coleman J. R., Nilsson J. R., Warner R. R., Batt P. Electron probe analysis of refractive bodies in Amoeba proteus. Exp Cell Res. 1973 Jan;76(1):31–40. doi: 10.1016/0014-4827(73)90415-1. [DOI] [PubMed] [Google Scholar]
- Condeelis J. S., Taylor D. L. The contractile basis of amoeboid movement. V. The control of gelation, solation, and contraction in extracts from Dictyostelium discoideum. J Cell Biol. 1977 Sep;74(3):901–927. doi: 10.1083/jcb.74.3.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Condeelis J. Isolation of concanavalin A caps during various stages of formation and their association with actin and myosin. J Cell Biol. 1979 Mar;80(3):751–758. doi: 10.1083/jcb.80.3.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cramer E. B., Gallin J. I. Localization of submembranous cations to the leading end of human neutrophils during chemotaxis. J Cell Biol. 1979 Aug;82(2):369–379. doi: 10.1083/jcb.82.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ettienne E. M. Control of contractility in Spirostomum by dissociated calcium ions. J Gen Physiol. 1970 Aug;56(2):168–179. doi: 10.1085/jgp.56.2.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fay F. S., Shlevin H. H., Granger W. C., Jr, Taylor S. R. Aequorin luminescence during activation of single isolated smooth muscle cells. Nature. 1979 Aug 9;280(5722):506–508. doi: 10.1038/280506a0. [DOI] [PubMed] [Google Scholar]
- Gail M. H., Boone C. W., Thompson C. S. A calcium requirement for fibroblast motility and prolifertion. Exp Cell Res. 1973 Jun;79(2):386–390. doi: 10.1016/0014-4827(73)90458-8. [DOI] [PubMed] [Google Scholar]
- Gilkey J. C., Jaffe L. F., Ridgway E. B., Reynolds G. T. A free calcium wave traverses the activating egg of the medaka, Oryzias latipes. J Cell Biol. 1978 Feb;76(2):448–466. doi: 10.1083/jcb.76.2.448. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hawkes R. B., Holberton D. V. A calcium-sensitive lanthanum inhibition of amoeboid movement. J Cell Physiol. 1973 Jun;81(3):365–370. doi: 10.1002/jcp.1040810309. [DOI] [PubMed] [Google Scholar]
- Hellewell S. B., Taylor D. L. The contractile basis of ameboid movement. VI. The solation-contraction coupling hypothesis. J Cell Biol. 1979 Dec;83(3):633–648. doi: 10.1083/jcb.83.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hendil K. B. Ion exchange properties of the glycocalyx of the amoeba Chaos chaos and its relation to pinocytosis. C R Trav Lab Carlsberg. 1971;38(12):187–211. [PubMed] [Google Scholar]
- Hitchcock S. E. Regulation of motility in nonmuscle cells. J Cell Biol. 1977 Jul;74(1):1–15. doi: 10.1083/jcb.74.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JEON K. W., BELL L. G. CHEMOTAXIS IN LARGE, FREE-LIVING AMOEBAE. Exp Cell Res. 1965 Jun;38:536–555. doi: 10.1016/0014-4827(65)90378-2. [DOI] [PubMed] [Google Scholar]
- Josefsson J. O., Holmer N. G., Hansson S. E. Membrane potential and conductance during pinocytosis induced in Amoeba proteus with alkali metal ions. Acta Physiol Scand. 1975 Jun;94(2):278–288. doi: 10.1111/j.1748-1716.1975.tb05887.x. [DOI] [PubMed] [Google Scholar]
- Josefsson J. O. Some bioelectrical properties of Amoeba proteus. Acta Physiol Scand. 1966 Apr;66(4):395–405. doi: 10.1111/j.1748-1716.1966.tb03216.x. [DOI] [PubMed] [Google Scholar]
- Klein H. P., Stockem W. Pinocytosis and locomotion of amoebae: XII. Dynamics and motive force generation during induced pinocytosis in A. proteus. Cell Tissue Res. 1979 Mar 19;197(2):263–279. doi: 10.1007/BF00233919. [DOI] [PubMed] [Google Scholar]
- Langer G. A., Frank J. S. Lanthanum in heart cell culture. Effect on calcium exchange correlated with its localization. J Cell Biol. 1972 Sep;54(3):441–455. doi: 10.1083/jcb.54.3.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lesseps R. J. The removal by phospholipase C of a layer of lanthanum-staining material external to the cell membrane in embryonic chick cells. J Cell Biol. 1967 Jul;34(1):173–183. doi: 10.1083/jcb.34.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mimura N., Asano A. Actin-related gelation of Ehrlich tumour cell extracts is reversibly inhibited by low concentrations of Ca2+. Nature. 1978 Mar 16;272(5650):273–276. doi: 10.1038/272273a0. [DOI] [PubMed] [Google Scholar]
- Nachmias V. T. Inhibition of streaming in amoeba by pinocytosis inducers. Possible mechanisms. Exp Cell Res. 1968 Aug-Sep;51(2-3):347–361. doi: 10.1016/0014-4827(68)90128-6. [DOI] [PubMed] [Google Scholar]
- Nuccitelli R., Poo M. M., Jaffe L. F. Relations between ameboid movement and membrane-controlled electrical currents. J Gen Physiol. 1977 Jun;69(6):743–763. doi: 10.1085/jgp.69.6.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollack H. MICRURGICAL STUDIES IN CELL PHYSIOLOGY : VI. CALCIUM IONS IN LIVING PROTOPLASM. J Gen Physiol. 1928 May 20;11(5):539–545. doi: 10.1085/jgp.11.5.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollard T. D. The role of actin in the temperature-dependent gelation and contraction of extracts of Acanthamoeba. J Cell Biol. 1976 Mar;68(3):579–601. doi: 10.1083/jcb.68.3.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prusch R. D., Hannafin J. A. Calcium distribution in Amoeba proteus. J Gen Physiol. 1979 Oct;74(4):511–521. doi: 10.1085/jgp.74.4.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prusch R. D., Hannafin J. A. Sucrose uptake by pinocytosis in Amoeba proteus and the influence of external calcium. J Gen Physiol. 1979 Oct;74(4):523–535. doi: 10.1085/jgp.74.4.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reynolds G. T. Image intensification applied to biological problems. Q Rev Biophys. 1972 Aug;5(3):295–347. doi: 10.1017/s0033583500000974. [DOI] [PubMed] [Google Scholar]
- Ridgway E. B., Durham A. C. Oscillations of calcium ion concentrations in Physarum polycephalum. J Cell Biol. 1976 Apr;69(1):223–226. doi: 10.1083/jcb.69.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rose B., Loewenstein W. R. Calcium ion distribution in cytoplasm visualised by aequorin: diffusion in cytosol restricted by energized sequestering. Science. 1975 Dec 19;190(4220):1204–1206. doi: 10.1126/science.1198106. [DOI] [PubMed] [Google Scholar]
- Shimomura O., Johnson F. H., Saiga Y. Microdetermination of Calcium by Aequorin Luminescence. Science. 1963 Jun 21;140(3573):1339–1340. doi: 10.1126/science.140.3573.1339. [DOI] [PubMed] [Google Scholar]
- Stockem W., Weber K., Wehland J. The influence of microinjected phalloidin on locomotion, protoplasmic streaming and cytoplasmic organization in Amoeba proteus and Physarum polycephalum. Cytobiologie. 1978 Oct;18(1):114–131. [PubMed] [Google Scholar]
- Stossel T. P., Hartwig J. H. Interactions of actin, myosin, and a new actin-binding protein of rabbit pulmonary macrophages. II. Role in cytoplasmic movement and phagocytosis. J Cell Biol. 1976 Mar;68(3):602–619. doi: 10.1083/jcb.68.3.602. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TASAKI I., KAMIYA N. A STUDY ON ELECTROPHYSIOLOGICAL PROPERTIES OF CARNIVOROUS AMOEBAE. J Cell Physiol. 1964 Jun;63:365–380. doi: 10.1002/jcp.1030630312. [DOI] [PubMed] [Google Scholar]
- Taylor D. L., Condeelis J. S. Cytoplasmic structure and contractility in amoeboid cells. Int Rev Cytol. 1979;56:57–144. doi: 10.1016/s0074-7696(08)61821-5. [DOI] [PubMed] [Google Scholar]
- Taylor D. L., Condeelis J. S., Moore P. L., Allen R. D. The contractile basis of amoeboid movement. I. The chemical control of motility in isolated cytoplasm. J Cell Biol. 1973 Nov;59(2 Pt 1):378–394. doi: 10.1083/jcb.59.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor D. L., Rhodes J. A., Hammond S. A. The contractile basis of ameboid movement. II. Structure and contractility of motile extracts and plasmalemma-ectoplasm ghosts. J Cell Biol. 1976 Jul;70(1):123–143. doi: 10.1083/jcb.70.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor D. L. The contractile basis of amoeboid movement. IV. The viscoelasticity and contractility of amoeba cytoplasm in vivo. Exp Cell Res. 1977 Mar 15;105(2):413–426. doi: 10.1016/0014-4827(77)90138-0. [DOI] [PubMed] [Google Scholar]
- Taylor D. L., Wang Y. L., Heiple J. M. Contractile basis of ameboid movement. VII. The distribution of fluorescently labeled actin in living amebas. J Cell Biol. 1980 Aug;86(2):590–598. doi: 10.1083/jcb.86.2.590. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yin H. L., Stossel T. P. Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein. Nature. 1979 Oct 18;281(5732):583–586. doi: 10.1038/281583a0. [DOI] [PubMed] [Google Scholar]