Abstract
The luminal and discoid vacuole membranes of the superficial cell layer of the transitional epithelium of the mammalian urinary bladder have been studied by thin-sectioning and freeze-fracture-etch (FFE) electron microscope methods. For the FFE studies membranes were deposited on a cationized glass surface, covered by a thin copper disc, and fractured under liquid N2. Specimens were etched at -100 degrees C and replicated at -190 degrees C. A model of the lattice membrane derived from thin sections was used to predict the heights of the fracture faces above the glass surface. A hexagonal pattern of globular intramembrane particles spaced 160 A apart was seen in the external fracture (EF) face plaques as previously described and regarded as the dominant structure. However, very extensive areas of another pattern, seen before in only limited areas, have beeen found in the EF faces. The pattern consists of a smooth hexagonal lattice with the same space constant as the globular one but a different structure. By image analysis it consists of overlapping domains bordered by shared but incomplete metal rims. Each domain has a central spot of metal encircled by a shadow. The surface of the smooth lattice is partly complementary to the corresponding protoplasmic fracture (PF) face which shows a similar hexagonal lattice with the same space constant. The height of the smooth EF lattice above the glass substrate is the same as the plane of the center of the lipid bilayer predicted by the model. The mean heights of the particles of the globular EF lattice are greater than the total thickness of the membrane as predicted by the model and confirmed by measurements. The globular EF lattice is not complementary and it is concluded that the globular particles do not exist in the native membrane but arise artifactually during the preparatory procedures.
Full Text
The Full Text of this article is available as a PDF (2.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blaurock A. E., Stoeckenius W. Structure of the purple membrane. Nat New Biol. 1971 Sep 29;233(39):152–155. doi: 10.1038/newbio233152a0. [DOI] [PubMed] [Google Scholar]
- Branton D., Bullivant S., Gilula N. B., Karnovsky M. J., Moor H., Mühlethaler K., Northcote D. H., Packer L., Satir B., Satir P. Freeze-etching nomenclature. Science. 1975 Oct 3;190(4209):54–56. doi: 10.1126/science.1166299. [DOI] [PubMed] [Google Scholar]
- Branton D. Fracture faces of frozen membranes. Proc Natl Acad Sci U S A. 1966 May;55(5):1048–1056. doi: 10.1073/pnas.55.5.1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Branton D. Freeze-etching studies of membrane structure. Philos Trans R Soc Lond B Biol Sci. 1971 May 27;261(837):133–138. doi: 10.1098/rstb.1971.0043. [DOI] [PubMed] [Google Scholar]
- Caruthers J. S., Bonneville M. A. Isolation and characterization of the urothelial lumenal plasma membrane. J Cell Biol. 1977 May;73(2):382–399. doi: 10.1083/jcb.73.2.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caspar D. L., Goodenough D. A., Makowski L., Phillips W. C. Gap junction structures. I. Correlated electron microscopy and x-ray diffraction. J Cell Biol. 1977 Aug;74(2):605–628. doi: 10.1083/jcb.74.2.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chlapowski F. J., Bonneville M. A., Staehelin L. A. Lumenal plasma membrane of the urinary bladder. II. Isolation and structure of membrane components. J Cell Biol. 1972 Apr;53(1):92–104. doi: 10.1083/jcb.53.1.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Costello M. J., Corless J. M. The direct measurement of temperature changes within freeze-fracture specimens during rapid quenching in liquid coolants. J Microsc. 1978 Jan;112(1):17–37. doi: 10.1111/j.1365-2818.1978.tb01151.x. [DOI] [PubMed] [Google Scholar]
- Fisher K. A. "Half" membrane enrichment: verification by electron microscopy. Science. 1975 Dec 5;190(4218):983–985. doi: 10.1126/science.1188378. [DOI] [PubMed] [Google Scholar]
- Fisher K. A., Stoeckenius W. Freeze-fractured purple membrane particles: protein content. Science. 1977 Jul 1;197(4298):72–74. doi: 10.1126/science.867052. [DOI] [PubMed] [Google Scholar]
- Gross H., Kuebler O., Bas E., Moor H. Decoration of specific sites on freeze-fractured membranes. J Cell Biol. 1978 Dec;79(3):646–656. doi: 10.1083/jcb.79.3.646. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gulik-Krzywicki T., Costello M. J. The use of low temperature X-ray diffraction to evaluate freezing methods used in freeze-fracture electron microscopy. J Microsc. 1978 Jan;112(1):103–113. doi: 10.1111/j.1365-2818.1978.tb01158.x. [DOI] [PubMed] [Google Scholar]
- Hereward F. V., Northcote D. H. Fracture planes of the plasmalemma of some higher plants revealed by freeze-etch. J Cell Sci. 1973 Sep;13(2):621–635. doi: 10.1242/jcs.13.2.621. [DOI] [PubMed] [Google Scholar]
- Hicks R. M., Ketterer B. Isolation of the plasma membrane of the luminal surface of rat bladder epithelium, and the occurrence of a hexagonal lattice of subunits both in negatively stained whole mounts and in sectioned membranes. J Cell Biol. 1970 Jun;45(3):542–553. doi: 10.1083/jcb.45.3.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hicks R. M., Ketterer B., Warren R. C. The ultrastructure and chemistry of the luminal plasma membrane of the mammalian urinary bladder: a structure with low permeability to water and ions. Philos Trans R Soc Lond B Biol Sci. 1974 Jul 25;268(891):23–38. doi: 10.1098/rstb.1974.0013. [DOI] [PubMed] [Google Scholar]
- Hicks R. M. The fine structure of the transitional epithelium of rat ureter. J Cell Biol. 1965 Jul;26(1):25–48. doi: 10.1083/jcb.26.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hicks R. M. The function of the golgi complex in transitional epithelium. Synthesis of the thick cell membrane. J Cell Biol. 1966 Sep;30(3):623–643. doi: 10.1083/jcb.30.3.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hicks R. M. The permeability of rat transitional epithelium. Kertinization and the barrier to water. J Cell Biol. 1966 Jan;28(1):21–31. doi: 10.1083/jcb.28.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ibañez N., Candiotti A., Calderon R. O., Monis B. Carbohydrate components of plasma membrane of transitional epithelium of urinary tract. Experientia. 1974 May 15;30(5):477–480. doi: 10.1007/BF01926303. [DOI] [PubMed] [Google Scholar]
- Knutton S., Robertson J. D. Regular structures in membranes: the lumenal plasma membrane of the cow urinary bladder. J Cell Sci. 1976 Nov;22(2):355–370. doi: 10.1242/jcs.22.2.355. [DOI] [PubMed] [Google Scholar]
- Makowski L., Caspar D. L., Phillips W. C., Goodenough D. A. Gap junction structures. II. Analysis of the x-ray diffraction data. J Cell Biol. 1977 Aug;74(2):629–645. doi: 10.1083/jcb.74.2.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minsky B. D., Chlapowski F. J. Morphometric analysis of the translocation of lumenal membrane between cytoplasm and cell surface of transitional epithelial cells during the expansion-contraction cycles of mammalian urinary bladder. J Cell Biol. 1978 Jun;77(3):685–697. doi: 10.1083/jcb.77.3.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nanninga N. Preservation of the ultrastructure of Bacillus subtilis by chemical fixation as verified by freeze-etching. J Cell Biol. 1969 Sep;42(3):733–744. doi: 10.1083/jcb.42.3.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Porter K. R., Kenyon K., Badenhausen S. Specializations of the unit membrane. Protoplasma. 1967;63(1):262–274. [PubMed] [Google Scholar]
- Robertson J. D. The structure of biological membranes. Current status. Arch Intern Med. 1972 Feb;129(2):202–228. [PubMed] [Google Scholar]
- Rothman J. E., Kennedy E. P. Asymmetrical distribution of phospholipids in the membrane of Bacillus megaterium. J Mol Biol. 1977 Mar 5;110(3):603–618. doi: 10.1016/s0022-2836(77)80114-9. [DOI] [PubMed] [Google Scholar]
- Rothman J. E., Lenard J. Membrane asymmetry. Science. 1977 Feb 25;195(4280):743–753. doi: 10.1126/science.402030. [DOI] [PubMed] [Google Scholar]
- Ruoho A., Kyte J. Photoaffinity labeling of the ouabain-binding site on (Na+ plus K+) adenosinetriphosphatase. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2352–2356. doi: 10.1073/pnas.71.6.2352. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Severs N. J., Warren R. C. Analysis of membrane structure in the transitional epithelium of rat urinary bladder. 1. The luminal membrane. J Ultrastruct Res. 1978 Aug;64(2):124–140. doi: 10.1016/s0022-5320(78)80031-8. [DOI] [PubMed] [Google Scholar]
- Singer S. J. The molecular organization of membranes. Annu Rev Biochem. 1974;43(0):805–833. doi: 10.1146/annurev.bi.43.070174.004105. [DOI] [PubMed] [Google Scholar]
- Staehelin L. A., Chlapowski F. J., Bonneville M. A. Lumenal plasma membrane of the urinary bladder. I. Three-dimensional reconstruction from freeze-etch images. J Cell Biol. 1972 Apr;53(1):73–91. doi: 10.1083/jcb.53.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stoeckenius W., Rowen R. A morphological study of Halobacterium halobium and its lysis in media of low salt concentration. J Cell Biol. 1967 Jul;34(1):365–393. doi: 10.1083/jcb.34.1.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Toeckenius W., Kunau W. H. Further characterization of particulate fractions from lysed cell envelopes of Halobacterium halobium and isolation of gas vacuole membranes. J Cell Biol. 1968 Aug;38(2):337–357. doi: 10.1083/jcb.38.2.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Unwin P. N., Henderson R. Molecular structure determination by electron microscopy of unstained crystalline specimens. J Mol Biol. 1975 May 25;94(3):425–440. doi: 10.1016/0022-2836(75)90212-0. [DOI] [PubMed] [Google Scholar]
- Unwin P. N., Zampighi G. Structure of the junction between communicating cells. Nature. 1980 Feb 7;283(5747):545–549. doi: 10.1038/283545a0. [DOI] [PubMed] [Google Scholar]
- Vergara J., Longley W., Robertson J. D. A hexagonal arrangement of subunits in membrane of mouse urinary bladder. J Mol Biol. 1969 Dec 28;46(3):593–596. doi: 10.1016/0022-2836(69)90200-9. [DOI] [PubMed] [Google Scholar]
- Vergara J., Zambrano F., Robertson J. D., Elrod H. Isolation and characterization of luminal membranes from urinary bladder. J Cell Biol. 1974 Apr;61(1):83–94. doi: 10.1083/jcb.61.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verkleij A. J., Momvers C., Leunissen-Bijvelt J., Ververgaert P. H. Lipidic intramembranous particles. Nature. 1979 May 10;279(5709):162–163. doi: 10.1038/279162a0. [DOI] [PubMed] [Google Scholar]
- Warren R. C., Hicks R. M. Structure of the subunits in the thick luminal membrane of rat urinary bladder. Nature. 1970 Jul 18;227(5255):280–281. doi: 10.1038/227280b0. [DOI] [PubMed] [Google Scholar]
- Whiteley N. M., Berg H. C. Amidination of the outer and inner surfaces of the human erythrocyte membrane. J Mol Biol. 1974 Aug 15;87(3):541–561. doi: 10.1016/0022-2836(74)90103-x. [DOI] [PubMed] [Google Scholar]
- Zampighi G., Unwin P. N. Two forms of isolated gap junctions. J Mol Biol. 1979 Dec 5;135(2):451–464. doi: 10.1016/0022-2836(79)90446-7. [DOI] [PubMed] [Google Scholar]
