Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 Aug 1;86(2):656–665. doi: 10.1083/jcb.86.2.656

Experimental dissection of flagellar surface motility in chlamydomonas

JL Hoffman, UW Goodenough
PMCID: PMC2111476  PMID: 7400220

Abstract

Experiments have explored the possible relationships between the flagellar surface motility of chlamydomonas, visualized as translocation of polystyrene beads by paralyzed (pf) mutants (Bloodgood, 1977, J. Cell Biol. 15:983-989), and the capacity of gametic flagella to participate in the mating reaction. While vegetative and gametic flagella bind beads with equal efficiencies and are capable of transporting them along entire flagellar lengths, beads on vegetative flagella are primarily associated with the proximal half of the flagella whereas those of gametic flagella exhibit no such preference. This difference may relate to the "tipping" response of gametes during sexual flagellar agglutination (Goodenough and Jurivich, 1978, J. Cell Biol. 79:680-693). Colchicine, vinblastine, chymotrypsin, cytochalasins B and D, and anti-β-tubulin antiserum are all able to inhibit the binding of beads to the flagellar suface. Trysin digestion and an antiserum directed against whole chlamydomonas flagella have no effect on the ability of flagella to bind beads, but the beads remain immobile. These results suggest that at least two flagellar activities participate in surface motility: (a) bead binding, which may involve a tubulin-like component at the flagellar surface; and (b) bead translocation, which may depend on a second component (e.g. an ATPase) of the flagellar surface. Surface motility is shown to be distinct from gametic adhesiveness per se, but it may participate in concentrating dispersed agglutinins, in driving them toward the flagellar tips, and/or in generating a signal-to-fuse from the flagellar tips to the cell body. Directly supporting these concepts is the observation that bound beads remain immobilized at the flagellar tips during the "tip-locking" stage of pf x pf matings, and the observation that bound ligands such as antibody fail to be tipped by trypsinized flagella.

Full Text

The Full Text of this article is available as a PDF (1,015.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abercrombie M., Heaysman J. E., Pegrum S. M. The locomotion of fibroblasts in culture. 3. Movements of particles on the dorsal surface of the leading lamella. Exp Cell Res. 1970 Oct;62(2):389–398. doi: 10.1016/0014-4827(70)90570-7. [DOI] [PubMed] [Google Scholar]
  2. Adair W. S., Jurivich D., Goodenough U. W. Localization of cellular antigens in sodium dodecyl sulfate-polyacrylamide gels. J Cell Biol. 1978 Oct;79(1):281–285. doi: 10.1083/jcb.79.1.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Albrecht-Buehler G., Goldman R. D. Microspike-mediated particle transport towards the cell body during early spreading of 3T3 cells. Exp Cell Res. 1976 Feb;97(2):329–339. doi: 10.1016/0014-4827(76)90624-8. [DOI] [PubMed] [Google Scholar]
  4. Albrecht-Bühler G., Solomon F. Properties of particle movement in the plasma membrane of 3T3 mouse fibroblasts. Exp Cell Res. 1974 Apr;85(2):225–233. doi: 10.1016/0014-4827(74)90121-9. [DOI] [PubMed] [Google Scholar]
  5. Bergman K., Goodenough U. W., Goodenough D. A., Jawitz J., Martin H. Gametic differentiation in Chlamydomonas reinhardtii. II. Flagellar membranes and the agglutination reaction. J Cell Biol. 1975 Dec;67(3):606–622. doi: 10.1083/jcb.67.3.606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bloodgood R. A., Leffler E. M., Bojczuk A. T. Reversible inhibition of Chlamydomonas flagellar surface motility. J Cell Biol. 1979 Sep;82(3):664–674. doi: 10.1083/jcb.82.3.664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bloodgood R. A. Motility occurring in association with the surface of the Chlamydomonas flagellum. J Cell Biol. 1977 Dec;75(3):983–989. doi: 10.1083/jcb.75.3.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bray D. Surface movements during the growth of single explanted neurons. Proc Natl Acad Sci U S A. 1970 Apr;65(4):905–910. doi: 10.1073/pnas.65.4.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DiPasquale A., Bell P. B., Jr The upper cell surface: its inability to support active cell movement in culture. J Cell Biol. 1974 Jul;62(1):198–214. doi: 10.1083/jcb.62.1.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Forest C. L., Goodenough D. A., Goodenough U. W. Flagellar membrane agglutination and sexual signaling in the conditional GAM-1 mutant of Chlamydomonas. J Cell Biol. 1978 Oct;79(1):74–84. doi: 10.1083/jcb.79.1.74. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Forest C. L., Togasaki R. K. Selection for conditional gametogenesis in Chlamydomonas reinhardi. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3652–3655. doi: 10.1073/pnas.72.9.3652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goodenough U. W., Adair W. S., Caligor E., Forest C. L., Hoffman J. L., Mesland D. A., Spath S. Membrane-membrane and membrane-ligand interactions in Chlamydomonas mating. Soc Gen Physiol Ser. 1980;34:131–152. [PubMed] [Google Scholar]
  13. Goodenough U. W., Hwang C., Martin H. Isolation and genetic analysis of mutant strains of Chlamydomonas reinhardi defective in gametic differentiation. Genetics. 1976 Feb;82(2):169–186. doi: 10.1093/genetics/82.2.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goodenough U. W., Hwang C., Warren A. J. Sex-limited expression of gene Loci controlling flagellar membrane agglutination in the chlamydomonas mating reaction. Genetics. 1978 Jun;89(2):235–243. doi: 10.1093/genetics/89.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goodenough U. W., Jurivich D. Tipping and mating-structure activation induced in Chlamydomonas gametes by flagellar membrane antisera. J Cell Biol. 1978 Dec;79(3):680–693. doi: 10.1083/jcb.79.3.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gorman D. S., Levine R. P. Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc Natl Acad Sci U S A. 1965 Dec;54(6):1665–1669. doi: 10.1073/pnas.54.6.1665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Harris A. K. Cell surface movements related to cell locomotion. Ciba Found Symp. 1973;14:3–26. doi: 10.1002/9780470719978.ch2. [DOI] [PubMed] [Google Scholar]
  18. Harris A., Dunn G. Centripetal transport of attached particles on both surfaces of moving fibroblasts. Exp Cell Res. 1972 Aug;73(2):519–523. doi: 10.1016/0014-4827(72)90084-5. [DOI] [PubMed] [Google Scholar]
  19. Koda L. Y., Partlow L. M. Membrane marker movement on sympathetic axons in tissue culture. J Neurobiol. 1976 Mar;7(2):157–172. doi: 10.1002/neu.480070208. [DOI] [PubMed] [Google Scholar]
  20. Martin N. C., Goodenough U. W. Gametic differentiation in Chlamydomonas reinhardtii. I. Production of gametes and their fine structure. J Cell Biol. 1975 Dec;67(3):587–605. doi: 10.1083/jcb.67.3.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McLean R. J., Brown R. M. Cell surface differentiation of Chlamydomonas during gametogenesis. I. Mating and concanavalin A agglutinability. Dev Biol. 1974 Feb;36(2):279–285. doi: 10.1016/0012-1606(74)90051-7. [DOI] [PubMed] [Google Scholar]
  22. Mesland D. A., Hoffman J. L., Caligor E., Goodenough U. W. Flagellar tip activation stimulated by membrane adhesions in Chlamydomonas gametes. J Cell Biol. 1980 Mar;84(3):599–617. doi: 10.1083/jcb.84.3.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Piperno G., Luck D. J. Microtubular proteins of Chlamydomonas reinhardtii. An immunochemical study based on the use of an antibody specific for the beta-tubulin subunit. J Biol Chem. 1977 Jan 10;252(1):383–391. [PubMed] [Google Scholar]
  24. SAGER R., GRANICK S. Nutritional studies with Chlamydomonas reinhardi. Ann N Y Acad Sci. 1953 Oct 14;56(5):831–838. doi: 10.1111/j.1749-6632.1953.tb30261.x. [DOI] [PubMed] [Google Scholar]
  25. Snell W. J. Mating in Chlamydomonas: a system for the study of specific cell adhesion. II. A radioactive flagella-binding assay for quantitation of adhesion. J Cell Biol. 1976 Jan;68(1):70–79. doi: 10.1083/jcb.68.1.70. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sueoka N., Chiang K. S., Kates J. R. Deoxyribonucleic acid replication in meiosis of Chlamydomonas reinhardi. I. Isotopic transfer experiments with a strain producing eight zoospores. J Mol Biol. 1967 Apr 14;25(1):47–66. doi: 10.1016/0022-2836(67)90278-1. [DOI] [PubMed] [Google Scholar]
  27. Watanabe T., Flavin M. Nucleotide-metabolizing enzymes in Chlamydomonas flagella. J Biol Chem. 1976 Jan 10;251(1):182–192. [PubMed] [Google Scholar]
  28. Witman G. B., Plummer J., Sander G. Chlamydomonas flagellar mutants lacking radial spokes and central tubules. Structure, composition, and function of specific axonemal components. J Cell Biol. 1978 Mar;76(3):729–747. doi: 10.1083/jcb.76.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES