Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 Aug 1;86(2):424–435. doi: 10.1083/jcb.86.2.424

Characterization and localization of a flagellar-specific membrane glycoprotein in Euglena

PMCID: PMC2111491  PMID: 6772649

Abstract

Purified flagella from Euglena yield a unique high molecular weight glycoprotein when treated with low concentrations of nonionic detergents. This glycoprotein termed "xyloglycorien" cannot be extracted from other regions of the cell, although a minor component that coextracts with xyloglycorien does have a counterpart in deflagellated cell bodies. Xyloglycorien is tentatively identified with a flagellar surface fuzzy layer that appears in negatively stained membrane vesicles of untreated flagella but not in similar vesicles after Nonidet P-40 extraction. The localization of xyloglycorien is further confirmed to be membrane associated by reciprocal extraction experiments using 12.5 mM lithium diiodosalicylate (LIS), which does not appreciably extract xyloglycorien, visibly solubilize membranes, or remove the fuzzy layer. Rabbit antibodies directed against the two major flagellar glycoproteins (xyloglycorien and mastigonemes) to some extent cross react, which may in part be caused by the large percentage of xylose found by thin-layer chromatography (TLC) analysis to be characteristic of both antigens. However, adsorption of anti- xyloglycorien sera with intact mastigonemes produced antibodies responding only to xyloglycorien, and vice versa, indicating the nonidentity of the two antigens. Antibodies or fragments of these antibodies used in immunofluorescence assays demonstrated that xyloglycorien is confined to the flagellum and possibly the adjacent reservoir and gullet. Binding could not be detected on the cell surface. The sum of these experiments suggests that, in addition to mastigonemes, at least one major membrane glycoprotein in Euglena is restricted to the flagellar domain and is not inserted into the contiguous cell surface region.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonsall R. W., Hunt S. Characteristics of interactions between surfactants and the human erythrocyte membrane. Biochim Biophys Acta. 1971 Oct 12;249(1):266–280. doi: 10.1016/0005-2736(71)90104-0. [DOI] [PubMed] [Google Scholar]
  2. Bouck G. B., Rogalski A., Valaitis A. Surface organization and composition of Euglena. II. Flagellar mastigonemes. J Cell Biol. 1978 Jun;77(3):805–826. doi: 10.1083/jcb.77.3.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brandtzaeg P. Conjugates of immunoglobulin G with different fluorochromes. I. Characterization by anionic-exchange chromatography. Scand J Immunol. 1973;2(3):273–290. doi: 10.1111/j.1365-3083.1973.tb02037.x. [DOI] [PubMed] [Google Scholar]
  4. Butters T. D., Hughes R. C. Solubilization and fractionation of glycoproteins and glycolipids of KB cell membranes. Biochem J. 1974 Jun;140(3):469–478. doi: 10.1042/bj1400469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dentler W. L. Microtubule-membrane interactions in cilia. I. Isolation and characterization of ciliary membranes from Tetrahymena pyriformis. J Cell Biol. 1980 Feb;84(2):364–380. doi: 10.1083/jcb.84.2.364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dentler W. L., Rosenbaum J. L. Flagellar elongation and shortening in Chlamydomonas. III. structures attached to the tips of flagellar microtubules and their relationship to the directionality of flagellar microtubule assembly. J Cell Biol. 1977 Sep;74(3):747–759. doi: 10.1083/jcb.74.3.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  8. Gabel C. A., Eddy E. M., Shapiro B. M. Regional differentiation of the sperm surface as studied with 125I-diiodofluorescein isothiocyanate, an impermeant reagent that allows isolation of the labeled components. J Cell Biol. 1979 Sep;82(3):742–754. doi: 10.1083/jcb.82.3.742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Geiduschek J. B., Singer S. J. Molecular changes in the membranes of mouse erythroid cells accompanying differentiation. Cell. 1979 Jan;16(1):149–163. doi: 10.1016/0092-8674(79)90196-x. [DOI] [PubMed] [Google Scholar]
  10. Goodenough U. W., Jurivich D. Tipping and mating-structure activation induced in Chlamydomonas gametes by flagellar membrane antisera. J Cell Biol. 1978 Dec;79(3):680–693. doi: 10.1083/jcb.79.3.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goodman S. R., Branton D. Spectrin binding and the control of membrane protein mobility. J Supramol Struct. 1978;8(4):455–463. doi: 10.1002/jss.400080408. [DOI] [PubMed] [Google Scholar]
  12. Hofmann C., Bouck G. B. Immunological and structural evidence for patterned intussusceptive surface growth in a unicellular organism. A postulated role for submembranous proteins and microtubules. J Cell Biol. 1976 Jun;69(3):693–715. doi: 10.1083/jcb.69.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kawai Y., Spiro R. G. Fat cell plasma membranes. II. Studies on the glycoprotein components. J Biol Chem. 1977 Sep 10;252(17):6236–6244. [PubMed] [Google Scholar]
  14. Kishida Y., Olsen B. R., Berg R. A., Prockop D. J. Two improved methods for preparing ferritin-protein conjugates for electron microscopy. J Cell Biol. 1975 Feb;64(2):331–339. doi: 10.1083/jcb.64.2.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Koo G. C., Stackpole C. W., Boyse E. A., Hämmerling U., Lardis M. P. Topographical location of H-Y antigen on mouse spermatozoa by immunoelectronmicroscopy. Proc Natl Acad Sci U S A. 1973 May;70(5):1502–1505. doi: 10.1073/pnas.70.5.1502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Leive L. Domains involving nonrandom distribution of lipopolysaccharide in the outer membrane of Escherichia coli. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5065–5068. doi: 10.1073/pnas.74.11.5065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Manton I. Observations on scale production in Prymnesium parvum. J Cell Sci. 1966 Sep;1(3):375–380. doi: 10.1242/jcs.1.3.375. [DOI] [PubMed] [Google Scholar]
  18. Miller K. R., Miller G. J. Organization of the cell membrane in Euglena. Protoplasma. 1978;95(1-2):11–24. doi: 10.1007/BF01279691. [DOI] [PubMed] [Google Scholar]
  19. Papermaster D. S., Schneider B. G., Zorn M. A., Kraehenbuhl J. P. Immunocytochemical localization of a large intrinsic membrane protein to the incisures and margins of frog rod outer segment disks. J Cell Biol. 1978 Aug;78(2):415–425. doi: 10.1083/jcb.78.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ringo D. L. Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. J Cell Biol. 1967 Jun;33(3):543–571. doi: 10.1083/jcb.33.3.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Singer S. J. Molecular biology of cellular membranes with applications to immunology. Adv Immunol. 1974;19(0):1–66. doi: 10.1016/s0065-2776(08)60251-5. [DOI] [PubMed] [Google Scholar]
  23. Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
  24. Steck T. L., Yu J. Selective solubilization of proteins from red blood cell membranes by protein perturbants. J Supramol Struct. 1973;1(3):220–232. doi: 10.1002/jss.400010307. [DOI] [PubMed] [Google Scholar]
  25. Stephens R. E. Major membrane protein differences in cilia and flagella: evidence for a membrane-associated tubulin. Biochemistry. 1977 May 17;16(10):2047–2058. doi: 10.1021/bi00629a001. [DOI] [PubMed] [Google Scholar]
  26. Tokuyasu K. T., Schekman R., Singer S. J. Domains of receptor mobility and endocytosis in the membranes of neonatal human erythrocytes and reticulocytes are deficient in spectrin. J Cell Biol. 1979 Feb;80(2):481–486. doi: 10.1083/jcb.80.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Weber K., Pringle J. R., Osborn M. Measurement of molecular weights by electrophoresis on SDS-acrylamide gel. Methods Enzymol. 1972;26:3–27. doi: 10.1016/s0076-6879(72)26003-7. [DOI] [PubMed] [Google Scholar]
  28. Witman G. B., Plummer J., Sander G. Chlamydomonas flagellar mutants lacking radial spokes and central tubules. Structure, composition, and function of specific axonemal components. J Cell Biol. 1978 Mar;76(3):729–747. doi: 10.1083/jcb.76.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yu J., Fischman D. A., Steck T. L. Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. J Supramol Struct. 1973;1(3):233–248. doi: 10.1002/jss.400010308. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES