Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 Aug 1;86(2):371–376. doi: 10.1083/jcb.86.2.371

Shape and volume changes in erythrocyte ghosts and spectrin-actin networks

PMCID: PMC2111495  PMID: 6893198

Abstract

In response to changes in electrolyte concentration and pH, erythrocyte ghosts can exhibit some of the characteristic shapes seen in the intact erythrocyte. These shape changes are accompanied by volume changes; both are reversible, not energy dependent, and not inhibited by sulfhydryl reagents. The volume reduction can also be seen in isolated Triton-free spectrin-actin lattices, showing that this network is capable of reversible contraction. The results suggest that reversible changes in size of the underlying cytoskeleton of the erythrocyte membrane can control cell shape.

Full Text

The Full Text of this article is available as a PDF (527.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen D. W., Cadman S. Calcium-induced erythrocyte membrane changes. The role of adsorption of cytosol proteins and proteases. Biochim Biophys Acta. 1979 Feb 20;551(1):1–9. doi: 10.1016/0005-2736(79)90348-1. [DOI] [PubMed] [Google Scholar]
  2. Bennett V., Branton D. Selective association of spectrin with the cytoplasmic surface of human erythrocyte plasma membranes. Quantitative determination with purified (32P)spectrin. J Biol Chem. 1977 Apr 25;252(8):2753–2763. [PubMed] [Google Scholar]
  3. Bennett V., Stenbuck P. J. Identification and partial purification of ankyrin, the high affinity membrane attachment site for human erythrocyte spectrin. J Biol Chem. 1979 Apr 10;254(7):2533–2541. [PubMed] [Google Scholar]
  4. Bessis M., Weed R. I. The structure of normal and pathologic erythrocytes. Adv Biol Med Phys. 1973;14:35–91. doi: 10.1016/b978-0-12-005214-1.50006-6. [DOI] [PubMed] [Google Scholar]
  5. Bjerrum P. J. Hemoglobin-depleted human erythrocyte ghosts: characterization of morphology and transport functions. J Membr Biol. 1979 Jun 29;48(1):43–67. doi: 10.1007/BF01869256. [DOI] [PubMed] [Google Scholar]
  6. Brecher G., Bessis M. Present status of spiculed red cells and their relationship to the discocyte-echinocyte transformation: a critical review. Blood. 1972 Sep;40(3):333–344. [PubMed] [Google Scholar]
  7. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
  8. Elgsaeter A., Branton D. Intramembrane particle aggregation in erythrocyte ghosts. I. The effects of protein removal. J Cell Biol. 1974 Dec;63(3):1018–1036. doi: 10.1083/jcb.63.3.1018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Elgsaeter A., Shotton D. M., Branton D. Intramembrane particle aggregation in erythrocyte ghosts. II. The influence of spectrin aggregation. Biochim Biophys Acta. 1976 Feb 19;426(1):101–122. doi: 10.1016/0005-2736(76)90433-8. [DOI] [PubMed] [Google Scholar]
  10. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  11. Guidotti G. Membrane proteins. Annu Rev Biochem. 1972;41:731–752. doi: 10.1146/annurev.bi.41.070172.003503. [DOI] [PubMed] [Google Scholar]
  12. Johnson R. M., Robinson J. Morphological changes in asymmetric erythrocyte membranes induced by electrolytes. Biochem Biophys Res Commun. 1976 Jun 7;70(3):925–931. doi: 10.1016/0006-291x(76)90680-x. [DOI] [PubMed] [Google Scholar]
  13. Johnson R. M. The kinetics of resealing of washed erythrocyte ghosts. J Membr Biol. 1975 Jul 24;22(3-4):231–253. doi: 10.1007/BF01868173. [DOI] [PubMed] [Google Scholar]
  14. Liu S. C., Fairbanks G., Palek J. Spontaneous, reversible protein cross-linking in the human erythrocyte membrane. Temperature and pH dependence. Biochemistry. 1977 Sep 6;16(18):4066–4074. doi: 10.1021/bi00637a020. [DOI] [PubMed] [Google Scholar]
  15. Luna E. J., Kidd G. H., Branton D. Identification by peptide analysis of the spectrin-binding protein in human erythrocytes. J Biol Chem. 1979 Apr 10;254(7):2526–2532. [PubMed] [Google Scholar]
  16. Lux S. E., John K. M., Karnovsky M. J. Irreversible deformation of the spectrin-actin lattice in irreversibly sickled cells. J Clin Invest. 1976 Oct;58(4):955–963. doi: 10.1172/JCI108549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nicolson G. L. Anionic sites of human erythrocyte membranes. I. Effects of trypsin, phospholipase C, and pH on the topography of bound positively charged colloidal particles. J Cell Biol. 1973 May;57(2):373–387. doi: 10.1083/jcb.57.2.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Palek J., Curby W. A., Lionetti F. J. Effects of calcium and adenosine triphosphate on volume of human red cell ghosts. Am J Physiol. 1971 Jan;220(1):19–26. doi: 10.1152/ajplegacy.1971.220.1.19. [DOI] [PubMed] [Google Scholar]
  19. Ralston G. B. The influence of salt on the aggregation state of spectrin from bovine erythrocyte membranes. Biochim Biophys Acta. 1976 Sep 7;443(3):387–393. doi: 10.1016/0005-2736(76)90458-2. [DOI] [PubMed] [Google Scholar]
  20. Sheetz M. P., Singer S. J. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4457–4461. doi: 10.1073/pnas.71.11.4457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sheetz M. P., Singer S. J. On the mechanism of ATP-induced shape changes in human erythrocyte membranes. I. The role of the spectrin complex. J Cell Biol. 1977 Jun;73(3):638–646. doi: 10.1083/jcb.73.3.638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Steck T. L. The organization of proteins in the human red blood cell membrane. A review. J Cell Biol. 1974 Jul;62(1):1–19. doi: 10.1083/jcb.62.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tyler J. M., Hargreaves W. R., Branton D. Purification of two spectrin-binding proteins: biochemical and electron microscopic evidence for site-specific reassociation between spectrin and bands 2.1 and 4.1. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5192–5196. doi: 10.1073/pnas.76.10.5192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Vaughan L., Penniston J. T. Cation control of erythrocyte membrane shape: Ca++ reversal of discocyte to echinocyte transition caused by Mg++ and other cations. Biochem Biophys Res Commun. 1976 Nov 8;73(1):200–205. doi: 10.1016/0006-291x(76)90516-7. [DOI] [PubMed] [Google Scholar]
  25. Wunderlich F., Herlan G. Reversibly contractile nuclear matrix. Its isolation, structure, and composition. J Cell Biol. 1977 May;73(2):271–278. doi: 10.1083/jcb.73.2.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yu J., Fischman D. A., Steck T. L. Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. J Supramol Struct. 1973;1(3):233–248. doi: 10.1002/jss.400010308. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES