Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 Aug 1;86(2):537–544. doi: 10.1083/jcb.86.2.537

Cyclic 3',5'-AMP relay in Dictyostelium discoideum III. The relationship of cAMP synthesis and secretion during the cAMP signaling response

PMCID: PMC2111501  PMID: 6249825

Abstract

Refinement of a perfusion technique permitted the simultaneous measurement of cAMP-elicited [3H]cAMP secretion and intracellular [3H]cAMP levels in sensitive D. discoideum amoebae. These data were compared with measurements of the rate of [32P]cAMP synthesis by extracts of amoebae sonicated at different times during the cAMP signaling response. cAMP stimulation of intact cells led to a transient activation of adenylate cyclase, which was blocked if 10(-4) M NaN3 was added with the stimulus. During responses elicited by 10(-6) M cAMP, 10(-8) M cAMP, and an increment in cAMP from 10(-8) M to 10(-7) M, the rate of cAMP secretion was proportional to the intracellular cAMP concentration. Removal of a 10(-6) M cAMP stimulus 2 min after the initiation of the response led to a precipitous decline in intracellular cAMP. This decline was more rapid than could be accounted for by secretion alone, suggesting intracellular phosphodiesterase destruction of newly synthesized cAMP. Employing these data and a simple rate equation, estimates of the time-course of the transient activation of adenylate cyclase and the rate constants for cAMP secretion and intracellular phosphodiesterase activity were obtained. The calculated rate of cAMP synthesis rose for approximately 1 to 2 min, peaked, and declined to approach prestimulus levels after 3 to 4 min. This time-course agreed qualitatively with direct measurements of the time-course of activation, indicating that the activation of adenylate cyclase is a major in determining the time-course of the cAMP secretion response.

Full Text

The Full Text of this article is available as a PDF (762.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chang Y. Y. Cyclic 3',5'-adenosine monophosphate phosphodiesterase produced by the slime mold Dictyostelium discoideum. Science. 1968 Jul 5;161(3836):57–59. doi: 10.1126/science.161.3836.57. [DOI] [PubMed] [Google Scholar]
  2. Devreotes P. N., Derstine P. L., Steck T. L. Cyclic 3',5' AMP relay in Dictyostelium discoideum. I. A technique to monitor responses to controlled stimuli. J Cell Biol. 1979 Feb;80(2):291–299. doi: 10.1083/jcb.80.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Devreotes P. N., Steck T. L. Cyclic 3',5' AMP relay in Dictyostelium discoideum. II. Requirements for the initiation and termination of the response. J Cell Biol. 1979 Feb;80(2):300–309. doi: 10.1083/jcb.80.2.300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dinauer M. C., Steck T. L., Devreotes P. N. Cyclic 3',5'-AMP relay in Dictyostelium discoideum IV. Recovery of the cAMP signaling response after adaptation to cAMP. J Cell Biol. 1980 Aug;86(2):545–553. doi: 10.1083/jcb.86.2.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gerisch G. Cell aggregation and differentiation in Dictyostelium. Curr Top Dev Biol. 1968;3:157–197. doi: 10.1016/s0070-2153(08)60354-3. [DOI] [PubMed] [Google Scholar]
  6. Gerisch G., Wick U. Intracellular oscillations and release of cyclic AMP from Dictyostelium cells. Biochem Biophys Res Commun. 1975 Jul 8;65(1):364–370. doi: 10.1016/s0006-291x(75)80102-1. [DOI] [PubMed] [Google Scholar]
  7. Green A. A., Newell P. C. Evidence for the existence of two types of cAMP binding sites in aggregating cells of Dictyostelium discoideum. Cell. 1975 Oct;6(2):129–136. doi: 10.1016/0092-8674(75)90003-3. [DOI] [PubMed] [Google Scholar]
  8. Juliani M. H., Klein C. Calcium ion effects on cyclic adenosine 3':5'-monophosphate bindings to the plasma membrane of Dictyostelium discoideum. Biochim Biophys Acta. 1977 Apr 27;497(2):369–376. doi: 10.1016/0304-4165(77)90194-5. [DOI] [PubMed] [Google Scholar]
  9. Klein C. Adenylate cyclase activity in Dictyostelium discoideum amoebae and its changes during differentiation. FEBS Lett. 1976 Sep 15;68(1):125–128. doi: 10.1016/0014-5793(76)80419-x. [DOI] [PubMed] [Google Scholar]
  10. Lemasters J. J., Hackenbrock C. R. Kinetics of product inhibition during firefly luciferase luminescence. Biochemistry. 1977 Feb 8;16(3):445–447. doi: 10.1021/bi00622a016. [DOI] [PubMed] [Google Scholar]
  11. Loomis W. F., Jr Sensitivity of Dictyostelium discoideum to nucleic acid analogues. Exp Cell Res. 1971 Feb;64(2):484–486. doi: 10.1016/0014-4827(71)90107-8. [DOI] [PubMed] [Google Scholar]
  12. Mullens I. A., Newell P. C. cAMP binding to cell surface receptors of Dictyostelium. Differentiation. 1978 May 26;10(3):171–176. doi: 10.1111/j.1432-0436.1978.tb00960.x. [DOI] [PubMed] [Google Scholar]
  13. Roos W., Gerisch G. Receptor-mediated adenylate cyclase activation in Dictyostelium discoideum. FEBS Lett. 1976 Oct 1;68(2):170–172. doi: 10.1016/0014-5793(76)80429-2. [DOI] [PubMed] [Google Scholar]
  14. Roos W., Scheidegger C., Gerish G. Adenylate cyclase activity oscillations as signals for cell aggregation in Dictyostelium discoideum. Nature. 1977 Mar 17;266(5599):259–261. doi: 10.1038/266259a0. [DOI] [PubMed] [Google Scholar]
  15. Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
  16. Sussman R., Sussman M. Cultivation of Dictyostelium discoideum in axenic medium. Biochem Biophys Res Commun. 1967 Oct 11;29(1):53–55. doi: 10.1016/0006-291x(67)90539-6. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES