Abstract
Central mitotic spindles in Diatoma vulgare have been investigated using serial sections and electron microscopy. Spindles at both early stages (before metaphase) and later stages of mitosis (metaphase to telophase) have been analyzed. We have used computer graphics technology to facilitate the analysis and to produce stereo images of the central spindle reconstructed in three dimensions. We find that at prometaphase, when the nuclear envelope is dissassembling, the spindle is constructed from two sets of polar microtubules (MTs) that interdigitate to form a zone of overlap. As the chromosomes become organized into the metaphase configuration, the polar MTs, the spindle, and the zone of overlap all elongate, while the number of MTs in the central spindle decreases from greater than 700 to approximately 250. Most of the tubules lost are short ones that reside near the spindle poles. The previously described decrease in the length of the zone of overlap during anaphase central spindle elongation is clearly demonstrated in stereo images. In addition, we have used our three- dimensional data to determine the lengths of the spindle MTs at various times during mitotis. The distribution of lengths is bimodal during prometaphase, but the short tubules disappear and the long tubules elongate as mitosis proceeds. The distributions of MT lengths are compared to the length distributions of MTs polymerized in vitro, and a model is presented to account for our findings about both MT length changes and microtubule movements.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen C., Borisy G. G. Structural polarity and directional growth of microtubules of Chlamydomonas flagella. J Mol Biol. 1974 Dec 5;90(2):381–402. doi: 10.1016/0022-2836(74)90381-7. [DOI] [PubMed] [Google Scholar]
- Bryan J. A quantitative analysis of microtubule elongation. J Cell Biol. 1976 Dec;71(3):749–767. doi: 10.1083/jcb.71.3.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coss R. A., Pickett-Heaps J. D. The effects of isopropyl N-phenyl carbamate on the green alga Oedogonium cardiacum. I. Cell division. J Cell Biol. 1974 Oct;63(1):84–98. doi: 10.1083/jcb.63.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dentler W. L., Granett S., Witman G. B., Rosenbaum J. L. Directionality of brain microtubule assembly in vitro. Proc Natl Acad Sci U S A. 1974 May;71(5):1710–1714. doi: 10.1073/pnas.71.5.1710. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuge H. Ultrastructure of the mitotic spindle. Int Rev Cytol Suppl. 1977;(6):1–58. [PubMed] [Google Scholar]
- Johnson K. A., Borisy G. G. Kinetic analysis of microtubule self-assembly in vitro. J Mol Biol. 1977 Nov 25;117(1):1–31. doi: 10.1016/0022-2836(77)90020-1. [DOI] [PubMed] [Google Scholar]
- Katz L., Levinthal C. Interactive computer graphics and representation of complex biological structures. Annu Rev Biophys Bioeng. 1972;1:465–504. doi: 10.1146/annurev.bb.01.060172.002341. [DOI] [PubMed] [Google Scholar]
- Kubai D. F. The evolution of the mitotic spindle. Int Rev Cytol. 1975;43:167–227. doi: 10.1016/s0074-7696(08)60069-8. [DOI] [PubMed] [Google Scholar]
- Lopresti V., Macagno E. R., Levinthal C. Structure and development of neuronal connections in isogenic organisms: transient gap junctions between growing optic axons and lamina neuroblasts. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1098–1102. doi: 10.1073/pnas.71.4.1098. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Margolis R. L., Wilson L., Keifer B. I. Mitotic mechanism based on intrinsic microtubule behaviour. Nature. 1978 Mar 30;272(5652):450–452. doi: 10.1038/272450a0. [DOI] [PubMed] [Google Scholar]
- Margolis R. L., Wilson L. Opposite end assembly and disassembly of microtubules at steady state in vitro. Cell. 1978 Jan;13(1):1–8. doi: 10.1016/0092-8674(78)90132-0. [DOI] [PubMed] [Google Scholar]
- Mc2ntosh J. R., Cande Z., Snyder J., Vanderslice K. Studies on the mechanism of mitosis. Ann N Y Acad Sci. 1975 Jun 30;253:407–427. doi: 10.1111/j.1749-6632.1975.tb19217.x. [DOI] [PubMed] [Google Scholar]
- McDonald K. L., Edwards M. K., McIntosh J. R. Cross-sectional structure of the central mitotic spindle of Diatoma vulgare. Evidence for specific interactions between antiparallel microtubules. J Cell Biol. 1979 Nov;83(2 Pt 1):443–461. doi: 10.1083/jcb.83.2.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McDonald K., Pickett-Heaps J. D., McIntosh J. R., Tippit D. H. On the mechanism of anaphase spindle elongation in Diatoma vulgare. J Cell Biol. 1977 Aug;74(2):377–388. doi: 10.1083/jcb.74.2.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McIntosh J. R., Cande W. Z., Snyder J. A. Structure and physiology of the mammalian mitotic spindle. Soc Gen Physiol Ser. 1975;30:31–76. [PubMed] [Google Scholar]
- McIntosh J. R., Sisken J. E., Chu L. K. Structural studies on mitotic spindles isolated from cultured human cells. J Ultrastruct Res. 1979 Jan;66(1):40–52. doi: 10.1016/s0022-5320(79)80064-7. [DOI] [PubMed] [Google Scholar]
- Murphy D. B., Johnson K. A., Borisy G. G. Role of tubulin-associated proteins in microtubule nucleation and elongation. J Mol Biol. 1977 Nov 25;117(1):33–52. doi: 10.1016/0022-2836(77)90021-3. [DOI] [PubMed] [Google Scholar]
- OOSAWA F., KASAI M. A theory of linear and helical aggregations of macromolecules. J Mol Biol. 1962 Jan;4:10–21. doi: 10.1016/s0022-2836(62)80112-0. [DOI] [PubMed] [Google Scholar]
- Oakley B. R., Heath I. B. The arrangement of microtubules in serially sectioned spindles of the alga Cryptomonas. J Cell Sci. 1978 Jun;31:53–70. doi: 10.1242/jcs.31.1.53. [DOI] [PubMed] [Google Scholar]
- Oosawa F. Size distribution of protein polymers. J Theor Biol. 1970 Apr;27(1):69–86. doi: 10.1016/0022-5193(70)90129-3. [DOI] [PubMed] [Google Scholar]
- Peterson J. B., Ris H. Electron-microscopic study of the spindle and chromosome movement in the yeast Saccharomyces cerevisiae. J Cell Sci. 1976 Nov;22(2):219–242. doi: 10.1242/jcs.22.2.219. [DOI] [PubMed] [Google Scholar]
- Pickett-Heaps J. D., McDonald K. L., Tippit D. H. Cell division in the pennate diatom Diatoma vulgare. Protoplasma. 1975;86(1-3):205–242. doi: 10.1007/BF01275633. [DOI] [PubMed] [Google Scholar]
- Pickett-Heaps J. D., Tippit D. H. The diatom spindle in perspective. Cell. 1978 Jul;14(3):455–467. doi: 10.1016/0092-8674(78)90232-5. [DOI] [PubMed] [Google Scholar]
- Rakic P., Stensas L. J., Sayre E., Sidman R. L. Computer-aided three-dimensional reconstruction and quantitative analysis of cells from serial electron microscopic montages of foetal monkey brain. Nature. 1974 Jul 5;250(461):31–34. doi: 10.1038/250031a0. [DOI] [PubMed] [Google Scholar]
- Roth L. E., Pihlaja D. J., Shigenaka Y. Microtubules in the heliozoan axopodium. I. The gradion hypothesis of allosterism in structural proteins. J Ultrastruct Res. 1970 Jan;30(1):7–37. doi: 10.1016/s0022-5320(70)90062-6. [DOI] [PubMed] [Google Scholar]
- Salmon E. D. Spindle microtubules: thermodynamics of in vivo assembly and role in chromosome movement. Ann N Y Acad Sci. 1975 Jun 30;253:383–406. doi: 10.1111/j.1749-6632.1975.tb19216.x. [DOI] [PubMed] [Google Scholar]
- Tilney L. G. How microtubule patterns are generated. The relative importance of nucleation and bridging of microtubules in the formation of the axoneme of Raphidiophrys. J Cell Biol. 1971 Dec;51(3):837–854. doi: 10.1083/jcb.51.3.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tippit D. H., Pickett-Heaps J. D. Mitosis in the pennate diatom Surirella ovalis. J Cell Biol. 1977 Jun;73(3):705–727. doi: 10.1083/jcb.73.3.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tippit D. H., Schulz D., Pickett-Heaps J. D. Analysis of the distribution of spindle microtubules in the diatom Fragilaria. J Cell Biol. 1978 Dec;79(3):737–763. doi: 10.1083/jcb.79.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tucker J. B. Initiation and differentiation of microtubule patterns in the ciliate Nassula. J Cell Sci. 1970 Nov;7(3):793–821. doi: 10.1242/jcs.7.3.793. [DOI] [PubMed] [Google Scholar]
- Ward S., Thomson N., White J. G., Brenner S. Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans.?2UU. J Comp Neurol. 1975 Apr 1;160(3):313–337. doi: 10.1002/cne.901600305. [DOI] [PubMed] [Google Scholar]
- Ware R. W. Three-dimensional reconstruction from serial sections. Int Rev Cytol. 1975;40:325–440. doi: 10.1016/s0074-7696(08)60956-0. [DOI] [PubMed] [Google Scholar]