Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1979 Nov 1;83(2):357–370. doi: 10.1083/jcb.83.2.357

Antibodies that bind specifically to synaptic sites on muscle fiber basal lamina

PMCID: PMC2111533  PMID: 91619

Abstract

Basal lamina (BL) ensheathes each skeletal muscle fiber and passes through the synaptic cleft at the neuromuscular junction. Synaptic portions of the BL are known to play important roles in the formation, function, and maintenance of the neuromuscular junction. Here we demonstrate molecular differences between synaptic and extrasynaptic BL. We obtained antisera to immunogens that might be derived from or share determinants with muscle fiber BL, and used immunohistochemical techniques to study the binding of antibodies to rat skeletal muscle. Four antisera contained antibodies that distinguished synaptic from extrasynaptic portions of the muscle fiber's surface. They were anti- anterior lens capsule, anti-acetylcholinesterase, anti-lens capsule collagen, and anti-muscle basement membrane collagen; the last two sera were selective only after antibodies binding to extrasynaptic areas had been removed by adsorption with connective tissue from endplate-free regions of muscle. Synaptic antigens revealed by each of the four sera were present on the external cell surface and persisted after removal of nerve terminal. Schwann cell, and postsynaptic plasma membrane. Thus, the antigens are contained in or connected to BL of the synaptic cleft. Details of staining patterns, differential susceptibility of antigens to proteolysis, and adsorption experiments showed that the antibodies define at least three different determinants that are present in synaptic but not extrasynaptic BL.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. J., Cohen M. W. Fluorescent staining of acetylcholine receptors in vertebrate skeletal muscle. J Physiol. 1974 Mar;237(2):385–400. doi: 10.1113/jphysiol.1974.sp010487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BIRKS R., HUXLEY H. E., KATZ B. The fine structure of the neuromuscular junction of the frog. J Physiol. 1960 Jan;150:134–144. doi: 10.1113/jphysiol.1960.sp006378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Betz W., Sakmann B. Effects of proteolytic enzymes on function and structure of frog neuromuscular junctions. J Physiol. 1973 May;230(3):673–688. doi: 10.1113/jphysiol.1973.sp010211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Frank E., Gautvik K., Sommerschild H. Cholinergic receptors at denervated mammalian motor end-plates. Acta Physiol Scand. 1975 Sep;95(1):66–76. doi: 10.1111/j.1748-1716.1975.tb10026.x. [DOI] [PubMed] [Google Scholar]
  5. Fukushi S., Spiro R. G. The lens capsule. Sugar and amino acid composition. J Biol Chem. 1969 Apr 25;244(8):2041–2048. [PubMed] [Google Scholar]
  6. GUTH L., ALBERS R. W., BROWN W. C. QUANTITATIVE CHANGES IN CHOLINESTERASE ACTIVITY OF DENERVATED MUSCLE FIBERS AND SOLE PLATES. Exp Neurol. 1964 Sep;10:236–250. doi: 10.1016/0014-4886(64)90065-2. [DOI] [PubMed] [Google Scholar]
  7. KARNOVSKY M. J. THE LOCALIZATION OF CHOLINESTERASE ACTIVITY IN RAT CARDIAC MUSCLE BY ELECTRON MICROSCOPY. J Cell Biol. 1964 Nov;23:217–232. doi: 10.1083/jcb.23.2.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Koenig J., Vigny M. Neural induction of the 16S acetylcholinesterase in muscle cell cultures. Nature. 1978 Jan 5;271(5640):75–77. doi: 10.1038/271075a0. [DOI] [PubMed] [Google Scholar]
  9. Spiro R. G. Nature of the glycoprotein components of basement membranes. Ann N Y Acad Sci. 1978 Jun 20;312:106–121. doi: 10.1111/j.1749-6632.1978.tb16796.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES