Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1979 Nov 1;83(2):394–402. doi: 10.1083/jcb.83.2.394

Correlation of dihydrofolate reductase elevation with gene amplification in a homogeneously staining chromosomal region in L5178Y cells

PMCID: PMC2111538  PMID: 500787

Abstract

A methotrexate (MTX)-resistant murine lymphoblastoid cell line has been obtained by serial passage in increasing concentrations of MTX which is greater than 100,000-fold resistant to MTX (L5178YR) and has dihydrofolate reductase (DHFR) levels 300-fold higher than the parental line. The L5178YR cell line synthesizes approximately 10-11% of its total soluble cell protein as DHFR regardless of growth phase, as measured by direct immunoprecipitation with a monospecific antiserum. Molecular hybridization of a purified [3H]DNA probe complimentary to DHFR specific mRNA with cellular DNA and RNA indicates that DHFR coding sequences are elevated several hundred fold in both nucleic acid species in the mutant cell line. Giemsa-banding studies of the diploid mutant line indicate the presence of a large homogeneously staining region on chromosome No. 2. In situ molecular hybridization studies indicate that the DHFR genes are localized in this homogeneously staining region. The homogeneously staining region probably consists of tandom repeats of a basic segment approximately 800 kilo base pairs long.

Full Text

The Full Text of this article is available as a PDF (710.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alt F. W., Kellems R. E., Bertino J. R., Schimke R. T. Selective multiplication of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells. J Biol Chem. 1978 Mar 10;253(5):1357–1370. [PubMed] [Google Scholar]
  2. Biedler J. L., Spengler B. A. Metaphase chromosome anomaly: association with drug resistance and cell-specific products. Science. 1976 Jan 16;191(4223):185–187. doi: 10.1126/science.942798. [DOI] [PubMed] [Google Scholar]
  3. FRIEDKIN M., CRAWFORD E., HUMPHREYS S. R., GOLDIN A. The association of increased dihydrofolate reductase with amethopterin resistance in mouse leukemia. Cancer Res. 1962 Jun;22:600–606. [PubMed] [Google Scholar]
  4. HAKALA M. T., ZAKRZEWSKI S. F., NICHOL C. A. Relation of folic acid reductase to amethopterin resistance in cultured mammalian cells. J Biol Chem. 1961 Mar;236:952–958. [PubMed] [Google Scholar]
  5. Hänggi U. J., Littlefield J. W. Altered regulation of the rate of synthesis of dihydrofolate reductase in methotrexate-resistant hamster cells. J Biol Chem. 1976 May 25;251(10):3075–3080. [PubMed] [Google Scholar]
  6. Kellems R. E., Alt F. W., Schimke R. T. Regulation of folate reductase synthesis in sensitive and methotrexate-resistant sarcoma 180 cells. In vitro translation and characterization of folate reductase mRNA. J Biol Chem. 1976 Nov 25;251(22):6987–6993. [PubMed] [Google Scholar]
  7. Kellems R. E., Morhenn V. B., Pfendt E. A., Alt F. W., Schimke R. T. Polyoma virus and cyclic AMP-mediated control of dihydrofolate reductase mRNA abundance in methotrexate-resistant mouse fibroblasts. J Biol Chem. 1979 Jan 25;254(2):309–318. [PubMed] [Google Scholar]
  8. Kempe T. D., Swyryd E. A., Bruist M., Stark G. R. Stable mutants of mammalian cells that overproduce the first three enzymes of pyrimidine nucleotide biosynthesis. Cell. 1976 Dec;9(4 Pt 1):541–550. doi: 10.1016/0092-8674(76)90036-2. [DOI] [PubMed] [Google Scholar]
  9. Meuth M., Green H. Alterations leading to increased ribonucleotide reductase in cells selected for resistance to deoxynucleosides. Cell. 1974 Dec;3(4):367–374. doi: 10.1016/0092-8674(74)90052-x. [DOI] [PubMed] [Google Scholar]
  10. Nesbitt M. N., Francke U. A system of nomenclature for band patterns of mouse chromosomes. Chromosoma. 1973;41(2):145–158. doi: 10.1007/BF00319691. [DOI] [PubMed] [Google Scholar]
  11. Nunberg J. H., Kaufman R. J., Schimke R. T., Urlaub G., Chasin L. A. Amplified dihydrofolate reductase genes are localized to a homogeneously staining region of a single chromosome in a methotrexate-resistant Chinese hamster ovary cell line. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5553–5556. doi: 10.1073/pnas.75.11.5553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. OSBORN M. J., HUENNEKENS F. M. Enzymatic reduction of dihydrofolic acid. J Biol Chem. 1958 Oct;233(4):969–974. [PubMed] [Google Scholar]
  13. Pardue M. L., Gall J. G. Nucleic acid hybridization to the DNA of cytological preparations. Methods Cell Biol. 1975;10:1–16. doi: 10.1016/s0091-679x(08)60727-x. [DOI] [PubMed] [Google Scholar]
  14. Perkins J. P., Hillcoat B. L., Bertino J. R. Dihydrofolate reductase from a resistant subline of the L1210 lymphoma. Purification and properties. J Biol Chem. 1967 Oct 25;242(20):4771–4776. [PubMed] [Google Scholar]
  15. Schimke R. T., Kaufman R. J., Alt F. W., Kellems R. F. Gene amplification and drug resistance in cultured murine cells. Science. 1978 Dec 8;202(4372):1051–1055. doi: 10.1126/science.715457. [DOI] [PubMed] [Google Scholar]
  16. Studier F. W. Analysis of bacteriophage T7 early RNAs and proteins on slab gels. J Mol Biol. 1973 Sep 15;79(2):237–248. doi: 10.1016/0022-2836(73)90003-x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES