Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1979 Nov 1;83(2):403–427. doi: 10.1083/jcb.83.2.403

Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin

PMCID: PMC2111545  PMID: 387806

Abstract

We describe the results of a systematic study, using electron microscopy, of the effects of ionic strength on the morphology of chromatin and of H1-depleted chromatin. With increasing ionic strength, chromatin folds up progressively from a filament of nucleosomes at approximately 1 mM monovalent salt through some intermediate higher- order helical structures (Thoma, F., and T. Koller, 1977, Cell 12:101- 107) with a fairly constant pitch but increasing numbers of nucleosomes per turn, until finally at 60 mM (or else in approximately 0.3 mM Mg++) a thick fiber of 250 A diameter is formed, corresponding to a structurally well-organized but not perfectly regular superhelix or solenoid of pitch approximately 110 A as described by Finch and Klug (1976, Proc. Natl. Acad. Sci. U.S.A. 73:1897-1901). The numbers of nucleosomes per turn of the helical structures agree well with those which can be calculated from the light-scattering data of Campbell et al. (1978, Nucleic Acids Res. 5:1571-1580). H1-depleted chromatin also condenses with increasing ionic strength but not so densely as chromatin and not into a definite structure with a well-defined fiber direction. At very low ionic strengths, nucleosomes are present in chromatin but not in H1-depleted chromatin which has the form of an unravelled filament. At somewhat higher ionic strengths (greater than 5 mM triethanolamine chloride), nucleosomes are visible in both types of specimen but the fine details are different. In chromatin containing H1, the DNA enters and leaves the nucleosome on the same side but in chromatin depleted of H1 the entrance and exit points are much more random and more or less on opposite sides of the nucleosome. We conclude that H1 stabilizes the nucleosome and is located in the region of the exit and entry points of the DNA. This result is correlated with biochemical and x-ray crystallographic results on the internal structure of the nucleosome core to give a picture of a nucleosome in which H1 is bound to the unique region on a complete two-turn, 166 base pair particle (Fig. 15). In the formation of higher-order structures, these regions on neighboring nucleosomes come closer together so that an H1 polymer may be formed in the center of the superhelical structures.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Billett M. A., Barry J. M. Role of histones in chromatin condensation. Eur J Biochem. 1974 Dec 2;49(3):477–484. doi: 10.1111/j.1432-1033.1974.tb03852.x. [DOI] [PubMed] [Google Scholar]
  2. Bina-Stein M., Singer M. F. The effect of H1 histone on the action of DNA-relaxing enzyme. Nucleic Acids Res. 1977 Jan;4(1):117–127. doi: 10.1093/nar/4.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradbury E. M., Carpenter B. G., Rattle H. W. Magnetic resonance studies of deoxyribonucleoprotein. Nature. 1973 Jan 12;241(5385):123–126. doi: 10.1038/241123a0. [DOI] [PubMed] [Google Scholar]
  4. Brasch K. Studies on the role of histones HI (f1) and H5 (f2c) in chromatin structure. Exp Cell Res. 1976 Sep;101(2):396–410. doi: 10.1016/0014-4827(76)90391-8. [DOI] [PubMed] [Google Scholar]
  5. Campbell A. M., Cotter R. I., Pardon J. F. Light scattering measurements supporting helical structures for chromatin in solution. Nucleic Acids Res. 1978 May;5(5):1571–1580. doi: 10.1093/nar/5.5.1571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chalkley R., Hunter C. Histone-histone propinquity by aldehyde fixation of chromatin. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1304–1308. doi: 10.1073/pnas.72.4.1304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davies H. G. Electron-microscope observations on the organization of heterochromatin in certain cells. J Cell Sci. 1968 Mar;3(1):129–150. doi: 10.1242/jcs.3.1.129. [DOI] [PubMed] [Google Scholar]
  8. Eickbush T. H., Moudrianakis E. N. The compaction of DNA helices into either continuous supercoils or folded-fiber rods and toroids. Cell. 1978 Feb;13(2):295–306. doi: 10.1016/0092-8674(78)90198-8. [DOI] [PubMed] [Google Scholar]
  9. Felsenfeld G. Chromatin. Nature. 1978 Jan 12;271(5641):115–122. doi: 10.1038/271115a0. [DOI] [PubMed] [Google Scholar]
  10. Finch J. T., Klug A. Solenoidal model for superstructure in chromatin. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1897–1901. doi: 10.1073/pnas.73.6.1897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Finch J. T., Klug A. X-ray and electron microscope analyses of crystals of nucleosome cores. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 1):1–9. doi: 10.1101/sqb.1978.042.01.003. [DOI] [PubMed] [Google Scholar]
  12. Finch J. T., Lutter L. C., Rhodes D., Brown R. S., Rushton B., Levitt M., Klug A. Structure of nucleosome core particles of chromatin. Nature. 1977 Sep 1;269(5623):29–36. doi: 10.1038/269029a0. [DOI] [PubMed] [Google Scholar]
  13. Finch J. T., Noll M., Kornberg R. D. Electron microscopy of defined lengths of chromatin. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3320–3322. doi: 10.1073/pnas.72.9.3320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Germond J. E., Hirt B., Oudet P., Gross-Bellark M., Chambon P. Folding of the DNA double helix in chromatin-like structures from simian virus 40. Proc Natl Acad Sci U S A. 1975 May;72(5):1843–1847. doi: 10.1073/pnas.72.5.1843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gordon V. C., Knobler C. M., Olins D. E., Schumaker V. N. Conformational changes of the chromatin subunit. Proc Natl Acad Sci U S A. 1978 Feb;75(2):660–663. doi: 10.1073/pnas.75.2.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hayashi K., Hofstaetter T., Yakuwa N. Asymmetry of chromatin subunits probed with histone H1 in an H1-DNA complex. Biochemistry. 1978 May 16;17(10):1880–1883. doi: 10.1021/bi00603a012. [DOI] [PubMed] [Google Scholar]
  17. Hewish D. R., Burgoyne L. A. Chromatin sub-structure. The digestion of chromatin DNA at regularly spaced sites by a nuclear deoxyribonuclease. Biochem Biophys Res Commun. 1973 May 15;52(2):504–510. doi: 10.1016/0006-291x(73)90740-7. [DOI] [PubMed] [Google Scholar]
  18. Hozier J., Renz M., Nehls P. The chromosome fiber: evidence for an ordered superstructure of nucleosomes. Chromosoma. 1977 Jul 18;62(4):301–317. doi: 10.1007/BF00327030. [DOI] [PubMed] [Google Scholar]
  19. Kornberg R. D. Structure of chromatin. Annu Rev Biochem. 1977;46:931–954. doi: 10.1146/annurev.bi.46.070177.004435. [DOI] [PubMed] [Google Scholar]
  20. Lang D. Regular superstructures of purified DNA in ethanolic solutions. J Mol Biol. 1973 Aug 5;78(2):247–254. doi: 10.1016/0022-2836(73)90113-7. [DOI] [PubMed] [Google Scholar]
  21. Langmore J. P., Wooley J. C. Chromatin architecture: investigation of a subunit of chromatin by dark field electron microscopy. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2691–2695. doi: 10.1073/pnas.72.7.2691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lewis E. A., DeBuysere M. S., Rees A. W. Configuration of unsheared nucleohistone. Effects of ionic strength and of histone F1 removal. Biochemistry. 1976 Jan 13;15(1):186–192. doi: 10.1021/bi00646a029. [DOI] [PubMed] [Google Scholar]
  23. Littau V. C., Burdick C. J., Allfrey V. G., Mirsky S. A. The role of histones in the maintenance of chromatin structure. Proc Natl Acad Sci U S A. 1965 Oct;54(4):1204–1212. doi: 10.1073/pnas.54.4.1204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lutter L. C. Kinetic analysis of deoxyribonuclease I cleavages in the nucleosome core: evidence for a DNA superhelix. J Mol Biol. 1978 Sep 15;124(2):391–420. doi: 10.1016/0022-2836(78)90306-6. [DOI] [PubMed] [Google Scholar]
  25. Lutter L. C. Precise location of DNase I cutting sites in the nucleosome core determined by high resolution gel electrophoresis. Nucleic Acids Res. 1979 Jan;6(1):41–56. doi: 10.1093/nar/6.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Noll M., Kornberg R. D. Action of micrococcal nuclease on chromatin and the location of histone H1. J Mol Biol. 1977 Jan 25;109(3):393–404. doi: 10.1016/s0022-2836(77)80019-3. [DOI] [PubMed] [Google Scholar]
  27. Olins A. L., Olins D. E. Spheroid chromatin units (v bodies). Science. 1974 Jan 25;183(4122):330–332. doi: 10.1126/science.183.4122.330. [DOI] [PubMed] [Google Scholar]
  28. Olins D. E., Bryan P. N., Harrington R. E., Hill W. E., Olins A. L. Conformational states of chromatin nu bodies induced by urea. Nucleic Acids Res. 1977 Jun;4(6):1911–1931. doi: 10.1093/nar/4.6.1911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Oudet P., Gross-Bellard M., Chambon P. Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell. 1975 Apr;4(4):281–300. doi: 10.1016/0092-8674(75)90149-x. [DOI] [PubMed] [Google Scholar]
  30. Oudet P., Spadafora C., Chambon P. Nucleosome structure II: structure of the SV40 minichromosome and electron microscopic evidence for reversible transitions of the nucleosome structure. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 1):301–312. doi: 10.1101/sqb.1978.042.01.032. [DOI] [PubMed] [Google Scholar]
  31. Pooley A. S., Pardon J. F., Richards B. M. The relation between the unit thread of chromosomes and isolated nucleohistone. J Mol Biol. 1974 Jan 5;85(4):533–549. doi: 10.1016/0022-2836(74)90314-3. [DOI] [PubMed] [Google Scholar]
  32. Prunell A., Kornberg R. D. Relation of nucleosomes to DNA sequences. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 1):103–108. doi: 10.1101/sqb.1978.042.01.011. [DOI] [PubMed] [Google Scholar]
  33. Renz M., Day L. A. Transition from noncooperative to cooperative and selective binding of histone H1 to DNA. Biochemistry. 1976 Jul 27;15(15):3220–3228. doi: 10.1021/bi00660a010. [DOI] [PubMed] [Google Scholar]
  34. Renz M., Nehls P., Hozier J. Involvement of histone H1 in the organization of the chromosome fiber. Proc Natl Acad Sci U S A. 1977 May;74(5):1879–1883. doi: 10.1073/pnas.74.5.1879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ris H., Kubai D. F. Chromosome structure. Annu Rev Genet. 1970;4:263–294. doi: 10.1146/annurev.ge.04.120170.001403. [DOI] [PubMed] [Google Scholar]
  36. Seligy V. L., Poon N. H. Alteration in nucleosome structure induced by thermal denaturation. Nucleic Acids Res. 1978 Jul;5(7):2233–2252. doi: 10.1093/nar/5.7.2233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Simpson R. T. Structure of the chromatosome, a chromatin particle containing 160 base pairs of DNA and all the histones. Biochemistry. 1978 Dec 12;17(25):5524–5531. doi: 10.1021/bi00618a030. [DOI] [PubMed] [Google Scholar]
  38. Simpson R. T., Whitlock J. P. Mapping DNAase l-susceptible sites in nucleosomes labeled at the 5' ends. Cell. 1976 Oct;9(2):347–353. doi: 10.1016/0092-8674(76)90124-0. [DOI] [PubMed] [Google Scholar]
  39. Singer D. S., Singer M. F. Studies on the interaction of H1 histone with superhelical DNA: characterization of the recognition and binding regions of H1 histones. Nucleic Acids Res. 1976 Oct;3(10):2531–2547. doi: 10.1093/nar/3.10.2531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Smerdon M. J., Isenberg I. Conformational changes in subfractions of calf thymus histone H1. Biochemistry. 1976 Sep 21;15(19):4233–4242. doi: 10.1021/bi00664a016. [DOI] [PubMed] [Google Scholar]
  41. Sperling L., Klug A. X-ray studies on "native" chromatin. J Mol Biol. 1977 May 15;112(2):253–263. doi: 10.1016/s0022-2836(77)80142-3. [DOI] [PubMed] [Google Scholar]
  42. Sperling L. The mass per unit length of chromatin by low-angle x-ray scattering. FEBS Lett. 1976 Apr 15;64(1):89–91. doi: 10.1016/0014-5793(76)80256-6. [DOI] [PubMed] [Google Scholar]
  43. Sperling R., Bustin M. Histone dimers: a fundamental unit in histone assembly. Nucleic Acids Res. 1976 May;3(5):1263–1275. doi: 10.1093/nar/3.5.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Strätling W. H., Müller U., Zentgraf H. The higher order repeat structure of chromatin is built up of globular particles containing eight nucleosomes. Exp Cell Res. 1978 Dec;117(2):301–311. doi: 10.1016/0014-4827(78)90144-1. [DOI] [PubMed] [Google Scholar]
  45. Thoma F., Koller T. Influence of histone H1 on chromatin structure. Cell. 1977 Sep;12(1):101–107. doi: 10.1016/0092-8674(77)90188-x. [DOI] [PubMed] [Google Scholar]
  46. Thomas J. O., Kornberg R. D. An octamer of histones in chromatin and free in solution. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2626–2630. doi: 10.1073/pnas.72.7.2626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Varshavsky A. J., Bakayev V. V., Georgiev G. P. Heterogeneity of chromatin subunits in vitro and location of histone H1. Nucleic Acids Res. 1976 Feb;3(2):477–492. doi: 10.1093/nar/3.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Vollenweider H. J., Koller T., Parello J., Sogo J. M. Superstructure of linear duplex DNA. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4125–4129. doi: 10.1073/pnas.73.11.4125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Vollenweider H. J., Sogo J. M., Koller T. A routine method for protein-free spreading of double- and single-stranded nucleic acid molecules. Proc Natl Acad Sci U S A. 1975 Jan;72(1):83–87. doi: 10.1073/pnas.72.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Worcel A., Benyajati C. Higher order coiling of DNA in chromatin. Cell. 1977 Sep;12(1):83–100. doi: 10.1016/0092-8674(77)90187-8. [DOI] [PubMed] [Google Scholar]
  51. Worcel A. Molecular architecture of the chromatin fiber. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 1):313–324. doi: 10.1101/sqb.1978.042.01.033. [DOI] [PubMed] [Google Scholar]
  52. de Murcia G., Das G. C., Erard M., Daune M. Superstructure and CD spectrum as probes of chromatin integrity. Nucleic Acids Res. 1978 Feb;5(2):523–535. doi: 10.1093/nar/5.2.523. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES