Abstract
The electrophysiology of chemotactic factor interaction with cultured human macrophages was investigated with standard intracellular recording techniques. In initial studies, E. coli endotoxin-activated serum, added to cell cultures during intracellular recordings, caused membrane hyperpolarizations which were greater than 30 s in duration, 10-50 mV in amplitude, and associated with decreased membrane resistance. Control serum produced smaller hyperpolarizations lasting 10-20 s and 5-30 m V in amplitude. Endotoxin-activated human serum deficient in the third complement component (C3) did not produce hyperpolarizations unless the serum was reconstituted with C3 before activation. Fractionation of normal activated serum by molecular seive chromatography (G-75 Sephadex) indicated that only fractions that eluted with an estimated molecular weight of 12,500 produced membrane potential changes. The active material that was chemotactic for the macrophages was identified as the small molecular weight cleavage product of C5, C5a, by heat stability (30 min at 56 degrees C) and inactivation by goat antisera to human C5 but not C3. 17 percent of macrophages stimulated with C5a exhibited a biphasic response characterized by a small (2-6 mV), brief (1-10 s) depolarization associated with a decreased membrane resistance preceding the larger and prolonged hyperpolarizations. Magnesium-ethylene glycol bis[β-aminoethyl ether]N,N'-tetraacetic acid (Mg [2.5 mM]-EGTA [5.0 mM]) blocked the C5a-evoked potential changes, whereas colchine (10(- 6)M) and cytochalasin B (3.0 μg/ml did not. Hydrocortisone sodium succinate (0.5 mg/ml) decreased the percentage of cells responding to C5a. In related studies, synthetic N-formyl methionyl peptide (f-met-leu-phe), which had chemotactic activity for cultured macrophages, produced similar membrane potential changes. Repeated exposure of macrophages to C5a or f- met-leu-phe resulted in desensitization to the same stimulus. Simultaneous photomicroscope and intracellular recording studies during macrophage stimulation with chemotactic factor demonstrated that the membrane potential changes preceded membrane spreading, ruffling, and pseudopod formation. These observations demonstrate that ion fluxes associated with membrane potential changes are early events in macrophage activation by chemotactic factors
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Becker E. L., Showell H. J., Henson P. M., Hsu L. S. The ability of chemotactic factors to induce lysosomal enzyme release. I. The characteristics of the release, the importance of surfaces and the relation of enzyme release to chemotactic responsiveness. J Immunol. 1974 Jun;112(6):2047–2054. [PubMed] [Google Scholar]
- Becker E. L., Showell H. J. The ability of chemotactic factors to induce lysosomal enzyme release. II. The mechanism of release. J Immunol. 1974 Jun;112(6):2055–2062. [PubMed] [Google Scholar]
- Bianco C., Eden A., Cohn Z. A. The induction of macrophage spreading: role of coagulation factors and the complement system. J Exp Med. 1976 Dec 1;144(6):1531–1544. doi: 10.1084/jem.144.6.1531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blaustein M. P. The interrelationship between sodium and calcium fluxes across cell membranes. Rev Physiol Biochem Pharmacol. 1974;70:33–82. doi: 10.1007/BFb0034293. [DOI] [PubMed] [Google Scholar]
- Boucek M. M., Snyderman R. Calcium influx requirement for human neutrophil chemotaxis: inhibition by lanthanum chloride. Science. 1976 Sep 3;193(4256):905–907. doi: 10.1126/science.948752. [DOI] [PubMed] [Google Scholar]
- Edmondson J. W., Li T. K. The effects of ionophore A23187 on erythrocytes. Relationship of atp and 2,3-diphosphoglycerate to calcium-binding capacity. Biochim Biophys Acta. 1976 Aug 4;443(1):106–113. doi: 10.1016/0005-2736(76)90494-6. [DOI] [PubMed] [Google Scholar]
- Gallin E. K., Wiederhold M. L., Lipsky P. E., Rosenthal A. S. Spontaneous and induced membrane hyperpolarizations in macrophages. J Cell Physiol. 1975 Dec;86 (Suppl 2)(3 Pt 2):653–661. doi: 10.1002/jcp.1040860510. [DOI] [PubMed] [Google Scholar]
- Gallin J. I., Clark R. A., Frank M. M. Kinetic analysis of chemotactic factor generation in human serum via activation of the classical and alternate complement pathways. Clin Immunol Immunopathol. 1975 Jan;3(3):334–346. doi: 10.1016/0090-1229(75)90020-3. [DOI] [PubMed] [Google Scholar]
- Gallin J. I., Durocher J. R., Kaplan A. P. Interaction of leukocyte chemotactic factors with the cell surface. I. Chemotactic factor-induced changes in human granulocyte surface charge. J Clin Invest. 1975 May;55(5):967–974. doi: 10.1172/JCI108026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gallin J. I., Wolff S. M. Leucocyte chemotaxis: physiological considerations and abnormalities. Clin Haematol. 1975 Oct;4(3):567–607. [PubMed] [Google Scholar]
- Lew V. L. On the ATP dependence of the Ca 2+ -induced increase in K + permeability observed in human red cells. Biochim Biophys Acta. 1971 Jun 1;233(3):827–830. doi: 10.1016/0005-2736(71)90185-4. [DOI] [PubMed] [Google Scholar]
- Meech R. W. The sensitivity of Helix aspersa neurones to injected calcium ions. J Physiol. 1974 Mar;237(2):259–277. doi: 10.1113/jphysiol.1974.sp010481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schiffmann E., Corcoran B. A., Wahl S. M. N-formylmethionyl peptides as chemoattractants for leucocytes. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1059–1062. doi: 10.1073/pnas.72.3.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Showell H. J., Freer R. J., Zigmond S. H., Schiffmann E., Aswanikumar S., Corcoran B., Becker E. L. The structure-activity relations of synthetic peptides as chemotactic factors and inducers of lysosomal secretion for neutrophils. J Exp Med. 1976 May 1;143(5):1154–1169. doi: 10.1084/jem.143.5.1154. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snyderman R., Altman L. C., Hausman M. S., Mergenhagen S. E. Human mononuclear leukocyte chemotaxis: a quantitative assay for humoral and cellular chemotactic factors. J Immunol. 1972 Mar;108(3):857–860. [PubMed] [Google Scholar]
- Ward P. A., Becker E. L. The deactivation of rabbit neutrophils by chemotactic factor and the nature of the activatable esterase. J Exp Med. 1968 Apr 1;127(4):693–709. doi: 10.1084/jem.127.4.693. [DOI] [PMC free article] [PubMed] [Google Scholar]