Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1977 Oct 1;75(1):56–66. doi: 10.1083/jcb.75.1.56

A requirement for trypsin-sensitive cell-surface components for cell-cell interactions of embryonic neural retina cells

DR McClay, LR Godding, ME Fransen
PMCID: PMC2111567  PMID: 562349

Abstract

A quantitative assay was used to measure the rate of collection of a population of embryonic neural retina cells to the surface of cell aggregates. The rate of collection of freshly trysinized cells was limited in the initial stages by the rate of replacement of trypsin-sensitive cell- surface components. When cells were preincubated, or "recovered," and then added to cell aggregates, collection occurred at a linear rate and was independent of protein and glycoprotein synthesis. The adhesion of recovered cells was temperature and energy dependent, and was reversibly inhibited by cytochalasin B. Colchicine had little effect on collection of recovered cells. Antiserum directed against recovered cell membranes was shown to bind to recovered cells by indirect immunofluorescence. The antiserum also was shown to inhibit collection of recovered cells to aggregates, suggesting that at least some of the antigens identified might be involved in the adhesion process. The inhibitory effect of the antiserum was dose dependent . Freshly trypsinized cells absorbed neither the immunofluorescence activity nor the adhesion-inhibiting activity. Recovered cells absorbed away both activities. In specificity studies, dorsal neural retina cells adhered to aggregates of ventral optic tectum in preference to aggregates of dorsal optic tectum. The adhesive specificity of the dorsal retina cells was less sensitive to trypsin than the adhesive specificity of ventral retina cells which adhered preferentially to dorsal tectal aggregates only after a period of recovery.

Full Text

The Full Text of this article is available as a PDF (828.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balsamo J., Lilien J. Embryonic cell aggregation: kinetics and specificity of binding of enhancing factors. Proc Natl Acad Sci U S A. 1974 Mar;71(3):727–731. doi: 10.1073/pnas.71.3.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Balsamo J., McDonough J., Lilien J. Retinal-tectal connections in the embryonic chick: evidence for regionally specific cell surface components which mimic the pattern of innervation. Dev Biol. 1976 Apr;49(2):338–346. doi: 10.1016/0012-1606(76)90179-2. [DOI] [PubMed] [Google Scholar]
  3. Barbera A. J. Adhesive recognition between developing retinal cells and the optic tecta of the chick embryo. Dev Biol. 1975 Sep;46(1):167–191. doi: 10.1016/0012-1606(75)90095-0. [DOI] [PubMed] [Google Scholar]
  4. Barbera A. J., Marchase R. B., Roth S. Adhesive recognition and retinotectal specificity. Proc Natl Acad Sci U S A. 1973 Sep;70(9):2482–2486. doi: 10.1073/pnas.70.9.2482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beug H., Katz F. E., Gerisch G. Dynamics of antigenic membrane sites relating to cell aggregation in Dictyostelium discoideum. J Cell Biol. 1973 Mar;56(3):647–658. doi: 10.1083/jcb.56.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cassiman J. J., Bernfield M. R. Transformation-induced alterations in fibroblast adhesion: masking by trypsin treatment. Exp Cell Res. 1975 Mar 1;91(1):31–35. doi: 10.1016/0014-4827(75)90137-8. [DOI] [PubMed] [Google Scholar]
  7. Goldschneider I., Moscona A. A. Tissue-specific cell-surface antigens in embryonic cells. J Cell Biol. 1972 May;53(2):435–449. doi: 10.1083/jcb.53.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gottlieb D. I., Merrell R., Glaser L. Temporal changes in embryonal cell surface recognition. Proc Natl Acad Sci U S A. 1974 May;71(5):1800–1802. doi: 10.1073/pnas.71.5.1800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gottlieb D. I., Rock K., Glaser L. A gradient of adhesive specificity in developing avian retina. Proc Natl Acad Sci U S A. 1976 Feb;73(2):410–414. doi: 10.1073/pnas.73.2.410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hausman R. E., Moscona A. A. Purification and characterization of the retina-specific cell-aggregating factor. Proc Natl Acad Sci U S A. 1975 Mar;72(3):916–920. doi: 10.1073/pnas.72.3.916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kemp R. B., Jones B. M., Cunningham I., James M. C. QUuantitative investigation on the effect of puromycin on the aggregation of trypsin- and versene-dissociated chick fibroblast cells. J Cell Sci. 1967 Sep;2(3):323–340. doi: 10.1242/jcs.2.3.323. [DOI] [PubMed] [Google Scholar]
  12. Lilien J. E. Specific enhancement of cell aggregation in vitro. Dev Biol. 1968 Jun;17(6):657–678. doi: 10.1016/0012-1606(68)90012-2. [DOI] [PubMed] [Google Scholar]
  13. MOSCONA A. Rotation-mediated histogenetic aggregation of dissociated cells. A quantifiable approach to cell interactions in vitro. Exp Cell Res. 1961 Jan;22:455–475. doi: 10.1016/0014-4827(61)90122-7. [DOI] [PubMed] [Google Scholar]
  14. Marchase R. B., Barbera A. J., Roth S. A molecular approach to retinotectal specificity. Ciba Found Symp. 1975;0(29):315–341. doi: 10.1002/9780470720110.ch15. [DOI] [PubMed] [Google Scholar]
  15. McClay D. R., Baker S. R. A kinetic study of embryonic cell adhesion. Dev Biol. 1975 Mar;43(1):109–122. doi: 10.1016/0012-1606(75)90135-9. [DOI] [PubMed] [Google Scholar]
  16. McClay D. R., Chambers A. F., Warren R. H. Specificity of cell-cell interactions in sea urchin embryos. Appearance of new cell-surface determinants at gastrulation. Dev Biol. 1977 Apr;56(2):343–355. doi: 10.1016/0012-1606(77)90275-5. [DOI] [PubMed] [Google Scholar]
  17. McClay D. R., Hausman R. E. Specificity of cell adhesion: differences between normal and hybrid sea urchin cells. Dev Biol. 1975 Dec;47(2):454–460. doi: 10.1016/0012-1606(75)90298-5. [DOI] [PubMed] [Google Scholar]
  18. McClay D. R., Moscona A. A. Purification of the specific cell-aggregating factor from embryonic neural retina cells. Exp Cell Res. 1974 Aug;87(2):438–443. doi: 10.1016/0014-4827(74)90514-x. [DOI] [PubMed] [Google Scholar]
  19. McGuire E. J. Intercellular adhesive selectivity. II. Properties of embryonic chick liver cell-cell adhesion. J Cell Biol. 1976 Jan;68(1):90–100. doi: 10.1083/jcb.68.1.90. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Merrell R., Glaser L. Specific recognition of plasma membranes by embryonic cells. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2794–2798. doi: 10.1073/pnas.70.10.2794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Moscona A. A. Cell aggregation: properties of specific cell-ligands and their role in the formation of multicellular systems. Dev Biol. 1968 Sep;18(3):250–277. doi: 10.1016/0012-1606(68)90035-3. [DOI] [PubMed] [Google Scholar]
  22. Roseman S. The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion. Chem Phys Lipids. 1970 Oct;5(1):270–297. doi: 10.1016/0009-3084(70)90024-1. [DOI] [PubMed] [Google Scholar]
  23. Roth S. Studies on intercellular adhesive selectivity. Dev Biol. 1968 Dec;18(6):602–631. doi: 10.1016/0012-1606(68)90029-8. [DOI] [PubMed] [Google Scholar]
  24. Rutishauser U., Thiery J. P., Brackenbury R., Sela B. A., Edelman G. M. Mechanisms of adhesion among cells from neural tissues of the chick embryo. Proc Natl Acad Sci U S A. 1976 Feb;73(2):577–581. doi: 10.1073/pnas.73.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sanger J. W., Holtzer H. Cytochalasin B: effects on cell morphology, cell adhesion, and mucopolysaccharide synthesis (cultured cells-contractile microfilaments-glycoproteins-embryonic cells-sorting-out). Proc Natl Acad Sci U S A. 1972 Jan;69(1):253–257. doi: 10.1073/pnas.69.1.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schwartz B. D., Nathenson S. G. Regeneration of transplantation antigens on mouse cells. Transplant Proc. 1971 Mar;3(1):180–182. [PubMed] [Google Scholar]
  27. Snell W. J. Mating in Chlamydomonas: a system for the study of specific cell adhesion. II. A radioactive flagella-binding assay for quantitation of adhesion. J Cell Biol. 1976 Jan;68(1):70–79. doi: 10.1083/jcb.68.1.70. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Spooner B. S., Conrad G. W. The role of extracellular materials in cell movement. I. Inhibition of mucopolysaccharide synthesis does not stop ruffling membrane activity or cell movement. J Cell Biol. 1975 May;65(2):286–297. doi: 10.1083/jcb.65.2.286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Telser A., Robinson H. C., Dorfman A. The biosynthesis of chondroitin-sulfate protein complex. Proc Natl Acad Sci U S A. 1965 Sep;54(3):912–919. doi: 10.1073/pnas.54.3.912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Vaughan G. L., Cook J. S. Regeneration of cation-transport capacity in HeLa cell membranes after specific blockade by ouabain. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2627–2631. doi: 10.1073/pnas.69.9.2627. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES