Abstract
The preferential adhesion of chick neural retina cells to surfaces of intact optic tecta has been investigated biochemically. The study uses a collection assay in which single cells from either dorsal or ventral halves of neural retain adhere preferentially to ventral or dorsal halves of optic tecta respectively. The data presented support the following conclusions: (a) The adhesion of ventral retina to dorsal tecta seems to depend on proteins located on ventral retina and on terminal β-N-acetylgalactosamine residues on dorsal tecta. (b) The adhesion of dorsal retina to ventral tecta seems to depend on proteins located on ventral tecta and on terminal β- N-acetylgalactosamine residues on dorsal retina. (c) A double gradient model for retinotectal adhesion along the dorsoventral axis is consistent with the data presented. The model utilizes only two complementary molecules. The molecule suggested to be concentrated dorsally in both retina and tectum seems to require terminal β-N-acetylgalactosamine residues for adhesion. Its activity is not affected by protease. A molecule fitting these qualifications, the ganglioside GM(2), could not be detected in a gradient, but lecithin vesicles containing GM(2) adhered preferentially to ventral tectal surfaces. The second molecule, concentrated ventrally in both retina and tectum, is a protein and seems capable of binding terminal β-N- acetylgalactosamine residues. One enzyme, UDP-galactose:GM(2) galactosyltransferase, has been found to be more concentrated in ventral retina than dorsal, but only by 30 percent.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balsamo J., Lilien J. The binding of tissue-specific adhesive molecules to the cell surface. A molecular basis for specificity. Biochemistry. 1975 Jan 14;14(1):167–171. doi: 10.1021/bi00672a028. [DOI] [PubMed] [Google Scholar]
- Barbera A. J. Adhesive recognition between developing retinal cells and the optic tecta of the chick embryo. Dev Biol. 1975 Sep;46(1):167–191. doi: 10.1016/0012-1606(75)90095-0. [DOI] [PubMed] [Google Scholar]
- Barbera A. J., Marchase R. B., Roth S. Adhesive recognition and retinotectal specificity. Proc Natl Acad Sci U S A. 1973 Sep;70(9):2482–2486. doi: 10.1073/pnas.70.9.2482. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chung S. H., Cooke J. Polarity of structure and of ordered nerve connections in the developing amphibian brain. Nature. 1975 Nov 13;258(5531):126–132. doi: 10.1038/258126a0. [DOI] [PubMed] [Google Scholar]
- DULBECCO R., FREEMAN G. Plaque production by the polyoma virus. Virology. 1959 Jul;8(3):396–397. doi: 10.1016/0042-6822(59)90043-1. [DOI] [PubMed] [Google Scholar]
- Deppert W., Werchau H., Walter G. Differentiation between intracellular and cell surface glycosyl transferases: galactosyl transferase activity in intact cells and in cell homogenate. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3068–3072. doi: 10.1073/pnas.71.8.3068. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dreyfus H., Urban P. F., Edel-Harth S., Mandel P. Developmental patterns of gangliosides and of phospholipids in chick retina and brain. J Neurochem. 1975 Sep;25(3):245–250. doi: 10.1111/j.1471-4159.1975.tb06960.x. [DOI] [PubMed] [Google Scholar]
- Edwards J. G., Campbell J. A., Robson R. T., Vicker M. G. Trypsinized BHK21 cells aggregate in the presence of metabolic inhibitors and in the absence of divalent cations. J Cell Sci. 1975 Dec;19(3):653–657. doi: 10.1242/jcs.19.3.653. [DOI] [PubMed] [Google Scholar]
- Frye L. D., Edidin M. The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons. J Cell Sci. 1970 Sep;7(2):319–335. doi: 10.1242/jcs.7.2.319. [DOI] [PubMed] [Google Scholar]
- Gottlieb D. I., Rock K., Glaser L. A gradient of adhesive specificity in developing avian retina. Proc Natl Acad Sci U S A. 1976 Feb;73(2):410–414. doi: 10.1073/pnas.73.2.410. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HAMDI F. A., WHITTERIDGE D. The representation of the retina on the optic tectum of the pigeon. Q J Exp Physiol Cogn Med Sci. 1954;39(2):111–119. doi: 10.1113/expphysiol.1954.sp001053. [DOI] [PubMed] [Google Scholar]
- HUGHES R. C., JEANLOZ R. W. THE EXTRACELLULAR GLYCOSIDASES OF DIPLOCOCCUS PNEUMONIAE. I. PURIFICATION AND PROPERTIES OF A NEURAMINIDASE AND A BETA-GALACTOSIDASE. ACTION ON THE ALPHA-1-ACID GLYCOPROTEIN OF HUMAN PLASMA. Biochemistry. 1964 Oct;3:1535–1543. doi: 10.1021/bi00898a025. [DOI] [PubMed] [Google Scholar]
- HUGHES R. C., JEANLOZ R. W. THE EXTRACELLULAR GLYCOSIDASES OF DIPLOCOCCUS PNEUMONIAE. II. PURIFICATION AND PROPERTIES OF A BETA-N-ACETYLGLUCOSAMINIDASE. ACTION ON A DERIVATIVE ON THE ALPHA-1-ACID GLYCOPROTEIN OF HUMAN PLASMA. Biochemistry. 1964 Oct;3:1543–1548. doi: 10.1021/bi00898a026. [DOI] [PubMed] [Google Scholar]
- Hausman R. E., Moscona A. A. Purification and characterization of the retina-specific cell-aggregating factor. Proc Natl Acad Sci U S A. 1975 Mar;72(3):916–920. doi: 10.1073/pnas.72.3.916. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill M. W., Lester R. Mixtures of gangliosides and phosphatidylcholine in aqueous dispersions. Biochim Biophys Acta. 1972 Sep 1;282(1):18–30. doi: 10.1016/0005-2736(72)90307-0. [DOI] [PubMed] [Google Scholar]
- Huang C. Studies on phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry. 1969 Jan;8(1):344–352. doi: 10.1021/bi00829a048. [DOI] [PubMed] [Google Scholar]
- Hunt R. K., Jacobson M. Development and stability of postional information in Xenopus retinal ganglion cells. Proc Natl Acad Sci U S A. 1972 Apr;69(4):780–783. doi: 10.1073/pnas.69.4.780. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunt R. K., Jacobson M. Neuronal specificity revisited. Curr Top Dev Biol. 1974;8:203–259. [PubMed] [Google Scholar]
- Kanfer J. N., Spielvogel C. On the loss of gangliosides by dialysis. J Neurochem. 1973 May;20(5):1483–1485. doi: 10.1111/j.1471-4159.1973.tb00262.x. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Marchase R. B., Barbera A. J., Roth S. A molecular approach to retinotectal specificity. Ciba Found Symp. 1975;0(29):315–341. doi: 10.1002/9780470720110.ch15. [DOI] [PubMed] [Google Scholar]
- Merrell R., Gottlieb D. I., Glaser L. Embryonal cell surface recognition. Extraction of an active plasma membrane component. J Biol Chem. 1975 Jul 25;250(14):5655–5659. [PubMed] [Google Scholar]
- Pagano R. E., Huang L. Interaction of phospholipid vesicles with cultured mammalian cells. II. Studies of mechanism. J Cell Biol. 1975 Oct;67(1):49–60. doi: 10.1083/jcb.67.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prieels J. P., Dolmans M., Schindler M., Sharon N. The binding of glycoconjugates to human-milk D-galactosyltransferase. Eur J Biochem. 1976 Jul 15;66(3):579–582. doi: 10.1111/j.1432-1033.1976.tb10584.x. [DOI] [PubMed] [Google Scholar]
- Roseman S. The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion. Chem Phys Lipids. 1970 Oct;5(1):270–297. doi: 10.1016/0009-3084(70)90024-1. [DOI] [PubMed] [Google Scholar]
- Roth S., McGuire E. J., Roseman S. An assay for intercellular adhesive specificity. J Cell Biol. 1971 Nov;51(21):525–535. doi: 10.1083/jcb.51.2.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roth S., McGuire E. J., Roseman S. Evidence for cell-surface glycosyltransferases. Their potential role in cellular recognition. J Cell Biol. 1971 Nov;51(21):536–547. doi: 10.1083/jcb.51.2.536. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rutishauser U., Thiery J. P., Brackenbury R., Sela B. A., Edelman G. M. Mechanisms of adhesion among cells from neural tissues of the chick embryo. Proc Natl Acad Sci U S A. 1976 Feb;73(2):577–581. doi: 10.1073/pnas.73.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SPERRY R. W. CHEMOAFFINITY IN THE ORDERLY GROWTH OF NERVE FIBER PATTERNS AND CONNECTIONS. Proc Natl Acad Sci U S A. 1963 Oct;50:703–710. doi: 10.1073/pnas.50.4.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SUZUKI K. A SIMPLE AND ACCURATE MICROMETHOD FOR QUANTITATIVE DETERMINATION OF GANGLIOSIDE PATTERNS. Life Sci. 1964 Nov;3:1227–1233. doi: 10.1016/0024-3205(64)90040-2. [DOI] [PubMed] [Google Scholar]
- SVENNERHOLM L. Quantitative estimation of sialic acids. II. A colorimetric resorcinol-hydrochloric acid method. Biochim Biophys Acta. 1957 Jun;24(3):604–611. doi: 10.1016/0006-3002(57)90254-8. [DOI] [PubMed] [Google Scholar]
- SVENNERHOLM L. THE GANGLIOSIDES. J Lipid Res. 1964 Apr;5:145–155. [PubMed] [Google Scholar]
- WARREN L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959 Aug;234(8):1971–1975. [PubMed] [Google Scholar]