Abstract
The distribution of Na+ pump sites (Na+-K+-ATPase) in the secretory epithelium of the avian salt gland was demonstrated by freeze-dry autoradiographic analysis of [(3)H] ouabain binding sites. Kinetic studies indicated that near saturation of tissue binding sites occurred when slices of salt glands from salt-stressed ducks were exposed to 2.2 μM ouabain (containing 5 μCi/ml [(3)H]ouabain) for 90 min. Washing with label-free Ringer's solution for 90 min extracted only 10% of the inhibitor, an amount which corresponded to ouabain present in the tissue spaces labeled by [(14)C]insulin. Increasing the KCl concentration of the incubation medium reduced the rate of ouabain binding but not the maximal amount bound. In contrast to the low level of ouabain binding to salt glands of ducks maintained on a freshwater regimen, exposure to a salt water diet led to a more than threefold increase in binding within 9-11 days. This increase paralleled the similar increment in Na+-K+-ATPase activity described previously. [(3)H]ouabain binding sites were localized autoradiographically to the folded basolateral plasma membrane of the principal secretory cells. The luminal surfaces of these cells were unlabeled. Mitotically active peripheral cells were also unlabeled. The cell-specific pattern of [(3)H]ouabain binding to principal secretory cells and the membrane-specific localization of binding sites to the nonluminal surfaces of these cells were identical to the distribution of Na+-K+-ATPase as reflected by the cytochemical localization of ouabain-sensitive and K+-dependent nitrophenyl phosphatase activity. The relationship between the nonluminal localization of Na+-K+-ATPase and the possible role of the enzyme n NaCl secretion is considered in the light of physiological data on electrolyte transport in salt glands and other secretory epithelia.
Full Text
The Full Text of this article is available as a PDF (3.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abel J. H., Jr Electron microscopic demonstration of adenosine triphosphate phosphohydrolase activity in herring gull salt glands. J Histochem Cytochem. 1969 Sep;17(9):570–584. doi: 10.1177/17.9.570. [DOI] [PubMed] [Google Scholar]
- Allen J. C., Schwartz A. Effects of potassium, temperature and time on ouabain interaction with the cardiac Na+, K+-ATPase: further evidence supporting an allosteric site. J Mol Cell Cardiol. 1970 Mar;1(1):39–45. doi: 10.1016/0022-2828(70)90027-1. [DOI] [PubMed] [Google Scholar]
- BONTING S. L., CARAVAGGIO L. L., CANADY M. R., HAWKINS N. M. STUDIES ON SODIUM-POTASSIUM-ACTIVATED ADENOSINETRIPHOSPHATASE. XI. THE SALT GLAND OF THE HERRING GULL. Arch Biochem Biophys. 1964 Jul 20;106:49–56. doi: 10.1016/0003-9861(64)90155-9. [DOI] [PubMed] [Google Scholar]
- Baker P. F., Willis J. S. Potassium ions and the binding of cardiac glycosides to mammalian cells. Nature. 1970 May 9;226(5245):521–523. doi: 10.1038/226521a0. [DOI] [PubMed] [Google Scholar]
- Brading A. F., Widdicombe J. H. An estimate of sodium-potassium pump activity and the number of pump sites in the smooth muscle of the guinea-pig taenia coli, using (3H)ouabain. J Physiol. 1974 Apr;238(2):235–249. doi: 10.1113/jphysiol.1974.sp010521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diamond J. M., Bossert W. H. Functional consequences of ultrastructural geometry in "backwards" fluid-transporting epithelia. J Cell Biol. 1968 Jun;37(3):694–702. doi: 10.1083/jcb.37.3.694. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellis R. A., Goertemiller C. C., Jr Cytological effects of salt-stress and localization of transport adenosine triphosphatase in the lateral nasal glands of the desert iguana, Dipsosaurus dorsalis. Anat Rec. 1974 Oct;180(2):285–297. doi: 10.1002/ar.1091800204. [DOI] [PubMed] [Google Scholar]
- Epstein R. W. The effects of ethacrynic acid on active transport of sugars and ions and on other metabolic processes in rabbit kidney cortex. Biochim Biophys Acta. 1972 Jul 3;274(1):128–139. doi: 10.1016/0005-2736(72)90288-x. [DOI] [PubMed] [Google Scholar]
- Ernst S. A., Ellis R. A. The development of surface specialization in the secretory epithelium of the avian salt gland in response to osmotic stress. J Cell Biol. 1969 Feb;40(2):305–321. doi: 10.1083/jcb.40.2.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ernst S. A., Goertemiller C. C., Jr, Ellis R. A. The effect of salt regimens on the development of (Na+K+)-dependent ATPase activity during the growth of salt glands of ducklings. Biochim Biophys Acta. 1967 Sep 9;135(4):682–692. doi: 10.1016/0005-2736(67)90098-3. [DOI] [PubMed] [Google Scholar]
- Ernst S. A. Transport adenosine triphosphatase cytochemistry. I. Biochemical characterization of a cytochemical medium for the ultrastructural localization of ouabain-sensitive, potassium-dependent phosphatase activity in the avian salt gland. J Histochem Cytochem. 1972 Jan;20(1):13–22. doi: 10.1177/20.1.13. [DOI] [PubMed] [Google Scholar]
- Fletcher G. L., Stainer I. M., Holmes W. N. Sequential changes in the adenosinetriphosphatase activity and the electrolyte excretory capacity of the nasal glands of the duck (Anas platyrhynchos) during the period of adaptation to hypertonic saline. J Exp Biol. 1967 Dec;47(3):375–391. doi: 10.1242/jeb.47.3.375a. [DOI] [PubMed] [Google Scholar]
- Gardner J. D., Conlon T. P. The effects of sodium and potassium on ouabain binding by human erythrocytes. J Gen Physiol. 1972 Nov;60(5):609–629. doi: 10.1085/jgp.60.5.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanwell A., Linzell J. L., Peaker M. Salt-gland secretion and blood flow in the goose. J Physiol. 1971 Mar;213(2):373–387. doi: 10.1113/jphysiol.1971.sp009387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffman J. F. The red cell membrane and the transport of sodium and potassium. Am J Med. 1966 Nov;41(5):666–680. doi: 10.1016/0002-9343(66)90029-5. [DOI] [PubMed] [Google Scholar]
- Hokin L. E., Dahl J. L., Deupree J. D., Dioxon J. F., Hackney J. F., Perdue J. F. Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. X. Purification of the enzyme from the rectal gland of Squalus acanthias. J Biol Chem. 1973 Apr 10;248(7):2593–2605. [PubMed] [Google Scholar]
- Kyte J. Immunoferritin determination of the distribution of (Na+ + K+) ATPase over the plasma membranes of renal convoluted tubules. I. Distal segment. J Cell Biol. 1976 Feb;68(2):287–303. doi: 10.1083/jcb.68.2.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kyte J. Immunoferritin determination of the distribution of (Na+ + K+) ATPase over the plasma membranes of renal convoluted tubules. II. Proximal segment. J Cell Biol. 1976 Feb;68(2):304–318. doi: 10.1083/jcb.68.2.304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kyte J. Properties of the two polypeptides of sodium- and potassium-dependent adenosine triphosphatase. J Biol Chem. 1972 Dec 10;247(23):7642–7649. [PubMed] [Google Scholar]
- Landowne D., Ritchie J. M. The binding of tritiated ouabain to mammalian non-myelinated nerve fibres. J Physiol. 1970 Apr;207(2):529–537. doi: 10.1113/jphysiol.1970.sp009077. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsui H., Schwartz A. Kinetic analysis of ouabain-K+ and Na+ interaction on a Na+, K+-dependent adenosinetriphosphatase from cardiac tissue. Biochem Biophys Res Commun. 1966 Oct 5;25(1):147–152. doi: 10.1016/0006-291x(66)90652-8. [DOI] [PubMed] [Google Scholar]
- Mills J. W., Ernst S. A., DiBona D. R. Localization of Na+-pump sites in frog skin. J Cell Biol. 1977 Apr;73(1):88–110. doi: 10.1083/jcb.73.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mills J. W., Ernst S. A. Localization of sodium pump sites in frog urinary bladder. Biochim Biophys Acta. 1975 Jan 28;375(2):268–273. doi: 10.1016/0005-2736(75)90194-7. [DOI] [PubMed] [Google Scholar]
- NECHAY B. R., LARIMER J. L., MAREN T. H. Effects of drugs and physiologic alterations on nasal saltexcretion in sea gulls. J Pharmacol Exp Ther. 1960 Dec;130:401–410. [PubMed] [Google Scholar]
- Quinton P. M., Tormey J. M. Localization of Na/K-ATPase sites in the secretory and reabsorptive epithelia of perfused eccrine sweat glands: a question to the role of the enzyme in secretion. J Membr Biol. 1976 Nov 29;29(4):383–399. doi: 10.1007/BF01868972. [DOI] [PubMed] [Google Scholar]
- Quinton P. M., Wright E. M., Tormey J. M. Localization of sodium pumps in the choroid plexus epithelium. J Cell Biol. 1973 Sep;58(3):724–730. doi: 10.1083/jcb.58.3.724. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruoho A., Kyte J. Photoaffinity labeling of the ouabain-binding site on (Na+ plus K+) adenosinetriphosphatase. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2352–2356. doi: 10.1073/pnas.71.6.2352. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHMIDT-NIELSEN K. The salt-secreting gland of marine birds. Circulation. 1960 May;21:955–967. doi: 10.1161/01.cir.21.5.955. [DOI] [PubMed] [Google Scholar]
- SEN A. K., POST R. L. STOICHIOMETRY AND LOCALIZATION OF ADENOSINE TRIPHOSPHATE-DEPENDENT SODIUM AND POTASSIUM TRANSPORT IN THE ERYTHROCYTE. J Biol Chem. 1964 Jan;239:345–352. [PubMed] [Google Scholar]
- SKOU J. C. ENZYMATIC BASIS FOR ACTIVE TRANSPORT OF NA+ AND K+ ACROSS CELL MEMBRANE. Physiol Rev. 1965 Jul;45:596–617. doi: 10.1152/physrev.1965.45.3.596. [DOI] [PubMed] [Google Scholar]
- Schmidt-Nielsen B. Intracellular concentrations of the salt gland of the herring gull Larus argentatus. Am J Physiol. 1976 Feb;230(2):514–521. doi: 10.1152/ajplegacy.1976.230.2.514. [DOI] [PubMed] [Google Scholar]
- Schwartz A., Lindenmayer G. E., Allen J. C., McCans J. L. The nature of the cardiac glycoside enzyme complex: mechanism and kinetics of binding and dissociation using a high-activity heart Na+, K+-ATPase. Ann N Y Acad Sci. 1974;242(0):577–597. doi: 10.1111/j.1749-6632.1974.tb19119.x. [DOI] [PubMed] [Google Scholar]
- Schwartz A., Lindenmayer G. E., Allen J. C. The sodium-potassium adenosine triphosphatase: pharmacological, physiological and biochemical aspects. Pharmacol Rev. 1975 Mar;27(01):3–134. [PubMed] [Google Scholar]
- Schwartz A., Matsui H., Laughter A. H. Tritiated digoxin binding to (Na+ + K+)-activated adenosine triphosphatase: possible allosteric site. Science. 1968 Apr 19;160(3825):323–325. doi: 10.1126/science.160.3825.323. [DOI] [PubMed] [Google Scholar]
- Staaland H. Temperature sensitivity of the avian salt gland. Comp Biochem Physiol. 1967 Dec;23(3):991–993. doi: 10.1016/0010-406x(67)90359-3. [DOI] [PubMed] [Google Scholar]
- Stewart D. J., Semply E. W., Swart G. T., Sen A. K. Induction of the catalytic protein of (Na+ plus K+)-ATPase in the salt gland of the duck. Biochim Biophys Acta. 1976 Jan 8;419(1):150–163. doi: 10.1016/0005-2736(76)90379-5. [DOI] [PubMed] [Google Scholar]
- THESLEFF S., SCHMIDT-NIELSEN K. An electrophysiological study of the salt gland of the herring gull. Am J Physiol. 1962 Mar;202:597–600. doi: 10.1152/ajplegacy.1962.202.3.597. [DOI] [PubMed] [Google Scholar]
- Tobin T., Sen A. K. Stability and ligand sensitivity of (3H)ouabain binding to (Na+ + K+)ATPase. Biochim Biophys Acta. 1970 Jan 14;198(1):120–131. doi: 10.1016/0005-2744(70)90040-9. [DOI] [PubMed] [Google Scholar]
- Tormey J. M. Significance of the histochemical demonstration of ATPase in epithelia noted for active transport. Nature. 1966 May 21;210(5038):820–822. doi: 10.1038/210820a0. [DOI] [PubMed] [Google Scholar]
- Van Rossum G. D. Movements of Na+ and K+ in slices of herring-gull salt gland. Biochim Biophys Acta. 1966 Oct 10;126(2):338–349. doi: 10.1016/0926-6585(66)90071-9. [DOI] [PubMed] [Google Scholar]
- WACHSTEIN M., MEISEL E. Histochemistry of hepatic phosphatases of a physiologic pH; with special reference to the demonstration of bile canaliculi. Am J Clin Pathol. 1957 Jan;27(1):13–23. doi: 10.1093/ajcp/27.1.13. [DOI] [PubMed] [Google Scholar]
