Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1977 Dec 1;75(3):915–940. doi: 10.1083/jcb.75.3.915

Histogenesis of mouse cerebellum in microwell cultures. Cell reaggregation and migration, fiber and synapse formation

PMCID: PMC2111581  PMID: 562889

Abstract

A microwell culture system was developed for analysis of cell movements and interactions during nervous system histogenesis. Cells from trypsinized 7-day-old mouse cerebellum reaggregated within hours into clusters which later developed interconnections consisting of either sheets of migrating cells and cell processes or cables of fiber bundles with cells migrating along their surfaces. Granule cells in several stages of differentiation, basket and/or stellate neurons, some larger neurons, and two types of neuroglial cells were identified in reproducible, nonrandom patterns by scanning and transmission electron microscopy. Axonal and dendritic processes, both with growth cones, and numerous synapses were generated in vitro.

Full Text

The Full Text of this article is available as a PDF (9.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altman J. Postnatal development of the cerebellar cortex in the rat. 3. Maturation of the components of the granular layer. J Comp Neurol. 1972 Aug;145(4):465–513. doi: 10.1002/cne.901450403. [DOI] [PubMed] [Google Scholar]
  2. Altman J. Postnatal development of the cerebellar cortex in the rat. I. The external germinal layer and the transitional molecular layer. J Comp Neurol. 1972 Jul;145(3):353–397. doi: 10.1002/cne.901450305. [DOI] [PubMed] [Google Scholar]
  3. Altman J. Postnatal development of the cerebellar cortex in the rat. II. Phases in the maturation of Purkinje cells and of the molecular layer. J Comp Neurol. 1972 Aug;145(4):399–463. doi: 10.1002/cne.901450402. [DOI] [PubMed] [Google Scholar]
  4. Barkley D. S., Rakic L. L., Chaffee J. K., Wong D. L. Cell separation by velocity sedimentation of postnatal mouse cerebellum. J Cell Physiol. 1973 Apr;81(2):271–279. doi: 10.1002/jcp.1040810215. [DOI] [PubMed] [Google Scholar]
  5. Bornshein M. B., Model P. G. Development of synapses and myelin in cultures of dissociated embryonic mouse spinal cord, medulla and cerebrum. Brain Res. 1972 Feb 25;37(2):287–293. doi: 10.1016/0006-8993(72)90673-7. [DOI] [PubMed] [Google Scholar]
  6. Bray D. Branching patterns of individual sympathetic neurons in culture. J Cell Biol. 1973 Mar;56(3):702–712. doi: 10.1083/jcb.56.3.702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bunge M. B. Fine structure of nerve fibers and growth cones of isolated sympathetic neurons in culture. J Cell Biol. 1973 Mar;56(3):713–735. doi: 10.1083/jcb.56.3.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Burry R. W., Lasher R. S. Uptake of GABA in dispersed cell cultures of postnatal rat cerebellum: an electron microscope autoradiographic study. Brain Res. 1975 May 9;88(3):502–507. doi: 10.1016/0006-8993(75)90661-7. [DOI] [PubMed] [Google Scholar]
  9. Cantor H., Boyse E. A. Lymphocytes as models for the study of mammalian cellular differentiation. Immunol Rev. 1977 Jan;33:105–124. doi: 10.1111/j.1600-065x.1977.tb00364.x. [DOI] [PubMed] [Google Scholar]
  10. Chan-Palay V. A light microscope study of the cytology and organization of neurons in the simple mammalian nucleus lateralis: columns and swirls. Z Anat Entwicklungsgesch. 1973;141(2):125–150. doi: 10.1007/BF00519881. [DOI] [PubMed] [Google Scholar]
  11. Chan-Palay V. The cytology of neurons and their dendrites in the simple mammalian nucleus lateralis. An electron microscope study. Z Anat Entwicklungsgesch. 1973;141(3):289–317. doi: 10.1007/BF00519049. [DOI] [PubMed] [Google Scholar]
  12. Crain S. M., Bornstein M. B. Organotypic bioelectric activity in cultured reaggregates of dissociated rodent brain cells. Science. 1972 Apr 14;176(4031):182–184. doi: 10.1126/science.176.4031.182. [DOI] [PubMed] [Google Scholar]
  13. De Cerro M. P., Snider R. S. Studies on the developing cerebellum. Ultrastructure of the growth cones. J Comp Neurol. 1968 Jul;133(3):341–362. doi: 10.1002/cne.901330305. [DOI] [PubMed] [Google Scholar]
  14. Del Cerro M. P., Snider R. S. Axo-somatic and axo-dendritic synapses in the cerebellum of the newborn rat. Brain Res. 1972 Aug 25;43(2):581–586. doi: 10.1016/0006-8993(72)90410-6. [DOI] [PubMed] [Google Scholar]
  15. Del Cerro M., Swarz J. R. Prenatal development of Bergmann glial fibres in rodent cerebellum. J Neurocytol. 1976 Dec;5(6):669–676. doi: 10.1007/BF01181580. [DOI] [PubMed] [Google Scholar]
  16. Foelix R. F., Oppenheim R. The development of synapses in the cerebellar cortex of the chick embryo. J Neurocytol. 1974 Aug;3(3):277–294. doi: 10.1007/BF01097914. [DOI] [PubMed] [Google Scholar]
  17. Fujita S., Shimada M., Nakamura T. H3-thymidine autoradiographic studies on the cell proliferation and differentiation in the external and the internal granular layers of the mouse cerebellum. J Comp Neurol. 1966 Oct;128(2):191–208. doi: 10.1002/cne.901280206. [DOI] [PubMed] [Google Scholar]
  18. Kim S. U. Light and electron microscope study of mouse cerebral neocortex in tissue culture. Exp Neurol. 1972 May;35(2):305–321. doi: 10.1016/0014-4886(72)90157-4. [DOI] [PubMed] [Google Scholar]
  19. Kornguth S. E., Scott G. The role of climbing fibers in the formation of Purkinje cell dendrites. J Comp Neurol. 1972 Sep;146(1):61–82. doi: 10.1002/cne.901460105. [DOI] [PubMed] [Google Scholar]
  20. Landis S. C. Granule cell heterotopia in normal and nervous mutant mice of the BALB-c strain. Brain Res. 1973 Oct 26;61:175–189. doi: 10.1016/0006-8993(73)90526-x. [DOI] [PubMed] [Google Scholar]
  21. Lasher R. S., Zagon I. S. The effect of potassium on neuronal differentiation in cultures of dissociated newborn rat cerebellum. Brain Res. 1972 Jun 22;41(2):482–488. doi: 10.1016/0006-8993(72)90521-5. [DOI] [PubMed] [Google Scholar]
  22. Letourneau P. C. Possible roles for cell-to-substratum adhesion in neuronal morphogenesis. Dev Biol. 1975 May;44(1):77–91. doi: 10.1016/0012-1606(75)90378-4. [DOI] [PubMed] [Google Scholar]
  23. MIALE I. L., SIDMAN R. L. An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp Neurol. 1961 Oct;4:277–296. doi: 10.1016/0014-4886(61)90055-3. [DOI] [PubMed] [Google Scholar]
  24. Messer A. The maintenance and identification of mouse cerebellar granule cells in monolayer culture. Brain Res. 1977 Jul 8;130(1):1–12. doi: 10.1016/0006-8993(77)90838-1. [DOI] [PubMed] [Google Scholar]
  25. Mugnaini E., Forstronen P. F. Ultrastructural studies on the cerebellar histogenesis. I. Differentiation of granule cells and development of glomeruli in the chick embryo. Z Zellforsch Mikrosk Anat. 1967;77(1):115–143. doi: 10.1007/BF00336702. [DOI] [PubMed] [Google Scholar]
  26. Nelson P. G., Peacock J. H. Electrical activity in dissociated cell cultures from fetal mouse cerebellum. Brain Res. 1973 Oct 26;61:163–174. doi: 10.1016/0006-8993(73)90525-8. [DOI] [PubMed] [Google Scholar]
  27. Privat A., Drian M. J., Mandon P. Synaptogenesis in the outgrowth of rat cerebellum in organized culture. J Comp Neurol. 1974 Feb 1;153(3):291–307. doi: 10.1002/cne.901530306. [DOI] [PubMed] [Google Scholar]
  28. Privat A., Drian M. J., Mandon P. The outgrowth of rat cerebellum in organized culture. Z Zellforsch Mikrosk Anat. 1973 Dec 31;146(1):45–67. doi: 10.1007/BF00306758. [DOI] [PubMed] [Google Scholar]
  29. Privat A., Drian M. J. Postnatal maturation of rat Purkinje cells cultivated in the absence of two afferent systems: an ultrastructural study. J Comp Neurol. 1976 Mar 15;166(2):201–243. doi: 10.1002/cne.901660207. [DOI] [PubMed] [Google Scholar]
  30. Rakic P. Extrinsic cytological determinants of basket and stellate cell dendritic pattern in the cerebellar molecular layer. J Comp Neurol. 1972 Nov;146(3):335–354. doi: 10.1002/cne.901460304. [DOI] [PubMed] [Google Scholar]
  31. Rakic P. Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus Rhesus. J Comp Neurol. 1971 Mar;141(3):283–312. doi: 10.1002/cne.901410303. [DOI] [PubMed] [Google Scholar]
  32. Rakic P., Sidman R. L. Organization of cerebellar cortex secondary to deficit of granule cells in weaver mutant mice. J Comp Neurol. 1973 Nov 15;152(2):133–161. doi: 10.1002/cne.901520203. [DOI] [PubMed] [Google Scholar]
  33. Rees R. P., Bunge M. B., Bunge R. P. Morphological changes in the neuritic growth cone and target neuron during synaptic junction development in culture. J Cell Biol. 1976 Feb;68(2):240–263. doi: 10.1083/jcb.68.2.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sidman R. L., Rakic P. Neuronal migration, with special reference to developing human brain: a review. Brain Res. 1973 Nov 9;62(1):1–35. doi: 10.1016/0006-8993(73)90617-3. [DOI] [PubMed] [Google Scholar]
  35. Sidman R. L., Wessells N. K. Control of direction of growth during the elongation of neurites. Exp Neurol. 1975 Sep;48(3 Pt 2):237–251. doi: 10.1016/0014-4886(75)90176-4. [DOI] [PubMed] [Google Scholar]
  36. Varon S. Neurons and glia in neural cultures. Exp Neurol. 1975 Sep;48(3 Pt 2):93–195. doi: 10.1016/0014-4886(75)90173-9. [DOI] [PubMed] [Google Scholar]
  37. WOLF M. K. DIFFERENTIATION OF NEURONAL TYPES AND SYNAPSES IN MYELINATING CULTURES OF MOUSE CEREBELLUM. J Cell Biol. 1964 Jul;22:259–279. doi: 10.1083/jcb.22.1.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Weissman I. L. Development and distribution of immunoglobulin-bearing cells in mice. Transplant Rev. 1975;24:159–176. doi: 10.1111/j.1600-065x.1975.tb00168.x. [DOI] [PubMed] [Google Scholar]
  39. West M. J., del Cerro M. Early formation of synapses in the molecular layer of the fetal rat cerebellum. J Comp Neurol. 1976 Jan 15;165(2):137–153. doi: 10.1002/cne.901650203. [DOI] [PubMed] [Google Scholar]
  40. Wolf M. K., Dubois-Dalcq M. Anatomy of cultured mouse cerebellum. I. Golgi and electron microscopic demonstrations of granule cells, their afferent and efferent synapses. J Comp Neurol. 1970 Nov;140(3):261–280. doi: 10.1002/cne.901400303. [DOI] [PubMed] [Google Scholar]
  41. Yavin E., Yavin Z. Attachment and culture of dissociated cells from rat embryo cerebral hemispheres on polylysine-coated surface. J Cell Biol. 1974 Aug;62(2):540–546. doi: 10.1083/jcb.62.2.540. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES