Abstract
To study the effect of nerve growth factor (NGF) on neuronal survival, growth, and differentiation, cultures of dissociated neonatal rat sympathetic neurons virtually free of other cell types were maintained for 3-4 wk. In the absence of NGF, the neurons did not survive for more than a day. Increased levels of NGF increased neuronal survival and growth (total protein and total lipid phosphate); saturation occurred at 0.5 microgram/ml 7S NGF. Neuronal differentiation examined by measuring catecholamine (CA) production from tyrosine also depended on the level of NGF in the culture medium. As the NGF concentration was raised, CA production per neuron, per nanogram protein, or per picomole lipid phosphate increased until saturation was achieved between 1 and 5 microgram/ml 7S NGF. Thus, NGF induces neuronal survival, growth, and differentiation of CA production in a dose-dependent fashion. Neuronal growth and differentiation were quantitatively compared in the presence of the high and low molecular weight forms of NGF; no significant functional differences were found.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atack C. V., Magnusson T. Individual elution of noradrenaline (together with adrenaline), dopamine, 5-hydroxytryptamine and histamine from a single, strong cation exchange column, by means of mineral acid-organic solvent mixtures. J Pharm Pharmacol. 1970 Aug;22(8):625–627. doi: 10.1111/j.2042-7158.1970.tb10584.x. [DOI] [PubMed] [Google Scholar]
- BONTING S. L., JONES M. Determination of microgram quantities of deoxyribonucleic acid and protein in tissues grown in vitro. Arch Biochem Biophys. 1957 Feb;66(2):340–353. doi: 10.1016/s0003-9861(57)80009-5. [DOI] [PubMed] [Google Scholar]
- Bray D. Surface movements during the growth of single explanted neurons. Proc Natl Acad Sci U S A. 1970 Apr;65(4):905–910. doi: 10.1073/pnas.65.4.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greene L. A. A dissociated cell culture bioassay for nerve growth factor. Neurobiology. 1974;4(5):286–292. [PubMed] [Google Scholar]
- Herrup K., Shooter E. M. Properties of the beta-nerve growth factor receptor in development. J Cell Biol. 1975 Oct;67(1):118–125. doi: 10.1083/jcb.67.1.118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hildebrand J. G., Barker D. L., Herbert E., Kravitz E. A. Screening for neurotransmitters: a rapid radiochemical procedure. J Neurobiol. 1971;2(3):231–246. doi: 10.1002/neu.480020305. [DOI] [PubMed] [Google Scholar]
- Hill C. E., Hendry I. A. Differences in sensitivity to nerve growth factor of axon formation and tyrosine hydroxylase induction in cultured sympathetic neurons. Neuroscience. 1976 Dec;1(6):489–496. doi: 10.1016/0306-4522(76)90101-9. [DOI] [PubMed] [Google Scholar]
- Levi-Montalcini R., Angeletti P. U. Nerve growth factor. Physiol Rev. 1968 Jul;48(3):534–569. doi: 10.1152/physrev.1968.48.3.534. [DOI] [PubMed] [Google Scholar]
- Levi-Montalcini R., Booker B. DESTRUCTION OF THE SYMPATHETIC GANGLIA IN MAMMALS BY AN ANTISERUM TO A NERVE-GROWTH PROTEIN. Proc Natl Acad Sci U S A. 1960 Mar;46(3):384–391. doi: 10.1073/pnas.46.3.384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levi-Montalcini R., Booker B. EXCESSIVE GROWTH OF THE SYMPATHETIC GANGLIA EVOKED BY A PROTEIN ISOLATED FROM MOUSE SALIVARY GLANDS. Proc Natl Acad Sci U S A. 1960 Mar;46(3):373–384. doi: 10.1073/pnas.46.3.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mains R. E., Patterson P. H. Primary cultures of dissociated sympathetic neurons. I. Establishment of long-term growth in culture and studies of differentiated properties. J Cell Biol. 1973 Nov;59(2 Pt 1):329–345. doi: 10.1083/jcb.59.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mains R. E., Patterson P. H. Primary cultures of dissociated sympathetic neurons. II. Initial studies on catecholamine metabolism. J Cell Biol. 1973 Nov;59(2 Pt 1):346–360. doi: 10.1083/jcb.59.2.346. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mains R. E., Patterson P. H. Primary cultures of dissociated sympathetic neurons. III. Changes in metabolism with age in culture. J Cell Biol. 1973 Nov;59(2 Pt 1):361–366. doi: 10.1083/jcb.59.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mobley W. C., Schenker A., Shooter E. M. Characterization and isolation of proteolytically modified nerve growth factor. Biochemistry. 1976 Dec 14;15(25):5543–5552. doi: 10.1021/bi00670a019. [DOI] [PubMed] [Google Scholar]
- Moore J. B., Jr, Mobley W. C., Shooter E. M. Proteolytic modification of the beta nerve growth factor protein. Biochemistry. 1974 Feb 12;13(4):833–840. doi: 10.1021/bi00701a030. [DOI] [PubMed] [Google Scholar]
- Otten U., Thoenen H. Modulatory role of glucocorticoids on NGF-mediated enzyme induction in organ cultures of sympathetic ganglia. Brain Res. 1976 Jul 30;111(2):438–441. doi: 10.1016/0006-8993(76)90791-5. [DOI] [PubMed] [Google Scholar]
- Paravicini U., Stoeckel K., Thoenen H. Biological importance of retrograde axonal transport of nerve growth factor in adrenergic neurons. Brain Res. 1975 Feb 7;84(2):279–291. doi: 10.1016/0006-8993(75)90982-8. [DOI] [PubMed] [Google Scholar]
- Patterson P. H., Chun L. L. The induction of acetylcholine synthesis in primary cultures of dissociated rat sympathetic neurons. I. Effects of conditioned medium. Dev Biol. 1977 Apr;56(2):263–280. doi: 10.1016/0012-1606(77)90269-x. [DOI] [PubMed] [Google Scholar]
- Patterson P. H., Chun L. L. The influence of non-neuronal cells on catecholamine and acetylcholine synthesis and accumulation in cultures of dissociated sympathetic neurons. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3607–3610. doi: 10.1073/pnas.71.9.3607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patterson P. H., Reichardt L. F., Chun L. L. Biochemical studies on the development of primary sympathetic neurons in cell culture. Cold Spring Harb Symp Quant Biol. 1976;40:389–397. doi: 10.1101/sqb.1976.040.01.037. [DOI] [PubMed] [Google Scholar]
- Pattison S. E., Dunn M. F. On the relationship of zinc ion to the structure and function of the 7S nerve growth factor protein. Biochemistry. 1975 Jun 17;14(12):2733–2739. doi: 10.1021/bi00683a027. [DOI] [PubMed] [Google Scholar]
- Rutledge C. O., Weiner N. The effect of reserpine upon the synthesis of norepinephrine in the isolated rabbit heart. J Pharmacol Exp Ther. 1967 Aug;157(2):290–302. [PubMed] [Google Scholar]
- Smith A. P., Varon S., Shooter E. M. Multiple forms of the nerve growth factor protein and its subunits. Biochemistry. 1968 Sep;7(9):3259–3268. doi: 10.1021/bi00849a032. [DOI] [PubMed] [Google Scholar]
- Varon S., Nomura J., Shooter E. M. Subunit structure of a high-molecular-weight form of the nerve growth factor from mouse submaxillary gland. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1782–1789. doi: 10.1073/pnas.57.6.1782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Varon S., Normura J., Shooter E. M. Reversible dissociation of the mouse nerve growth factor protein into different subunits. Biochemistry. 1968 Apr;7(4):1296–1303. doi: 10.1021/bi00844a008. [DOI] [PubMed] [Google Scholar]
- Varon S., Raiborn C., Burnham P. A. Implication of a nerve growth factor-like antigen in the support derived by ganglionic neurons from their homologous glia in dissociated cultures. Neurobiology. 1974;4(5):317–327. [PubMed] [Google Scholar]
- Varon S., Raiborn C., Norr S. Association of antibody to nerve growth factor with ganglionic non-neurons (glia) and consequent interference with their neuron-supportive action. Exp Cell Res. 1974 Oct;88(2):247–256. doi: 10.1016/0014-4827(74)90238-9. [DOI] [PubMed] [Google Scholar]
- Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
- Young M., Saide J. D., Murphy R. A., Arnason B. G. Molecular size of nerve growth factor in dilute solution. J Biol Chem. 1976 Jan 25;251(2):459–464. [PubMed] [Google Scholar]