Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1977 Dec 1;75(3):837–850. doi: 10.1083/jcb.75.3.837

Remodeling of neuronal membranes as an early response to deafferentation. A freeze-fracture study

PMCID: PMC2111593  PMID: 925083

Abstract

The early effects of deafferentation on the postsynaptic membrane beneath the end bulb of Held in the anteroventral cochlear nucleus (AVCN) were studied with the freeze-fracture technique. Three distinct responses were seen on the external membrane leaflet after cochlear ablation. Within 12 h the number of nonaggregate particles increased 147% by the addition of new particles to the membrane. The increase in number of nonaggregate particles continued until 4 days after cochlear ablation. The other responses occurred later, after degenerative changes were present in the end bulb. Between 1 and 2 days after cochlear ablation, the number of perisynaptic aggregates surrounding the postsynaptic active zone decreased to 10% of normal numbers. By 4 days, all perisynaptic aggregates had disappeared from the membrane. Coated vesicles may be involved in removing these aggregates. Between 1 and 3 days, the number of junctional aggregates decreased, but the size of the aggregates increased, apparently as a result of coalescence of nearby junctional aggregates. The total number of particles in junctional aggregates in the membrane was not altered during the first 6 days after cochlear ablation. The three separate responses suggest the existence of at least three different types of intramembranous particles on the external leaflet of the principal cell membrane, with each type dependent upon different cues for its maintenance in the membrane.

Full Text

The Full Text of this article is available as a PDF (3.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AXELSSON J., THESLEFF S. A study of supersensitivity in denervated mammalian skeletal muscle. J Physiol. 1959 Jun 23;147(1):178–193. doi: 10.1113/jphysiol.1959.sp006233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berg D. K., Hall Z. W. Increased extrajunctional acetylcholine sensitivity produced by chronic acetylcholine sensitivity produced by chronic post-synaptic neuromuscular blockade. J Physiol. 1975 Jan;244(3):659–676. doi: 10.1113/jphysiol.1975.sp010818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berg D. K., Kelly R. B., Sargent P. B., Williamson P., Hall Z. W. Binding of -bungarotoxin to acetylcholine receptors in mammalian muscle (snake venom-denervated muscle-neonatal muscle-rat diaphragm-SDS-polyacrylamide gel electrophoresis). Proc Natl Acad Sci U S A. 1972 Jan;69(1):147–151. doi: 10.1073/pnas.69.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brockes J. P., Berg D. K., Hall Z. W. The biochemical properties and regulation of acetylcholine receptors in normal and denervated muscle. Cold Spring Harb Symp Quant Biol. 1976;40:253–262. doi: 10.1101/sqb.1976.040.01.026. [DOI] [PubMed] [Google Scholar]
  5. Cartaud J., Benedetti E. L., Cohen J. B., Meunier J. C., Changeux J. P. Presence of a lattice structure in membrane fragments rich in nicotinic receptor protein from the electric organ of Torpedo marmorata. FEBS Lett. 1973 Jun 15;33(1):109–113. doi: 10.1016/0014-5793(73)80171-1. [DOI] [PubMed] [Google Scholar]
  6. Changeux J. P., Benedetti L., Bourgeois J. P., Brisson A., Cartaud J., Devaux P., Grünhagen H., Moreau M., Popot J. L., Sobel A. Some structural properties of the cholinergic receptor protein in its membrane environmental relevant to its function as a pharmacological receptor. Cold Spring Harb Symp Quant Biol. 1976;40:211–230. doi: 10.1101/sqb.1976.040.01.023. [DOI] [PubMed] [Google Scholar]
  7. Chen Y. S., Hubbell W. L. Temperature- and light-dependent structural changes in rhodopsin-lipid membranes. Exp Eye Res. 1973 Dec 24;17(6):517–532. doi: 10.1016/0014-4835(73)90082-1. [DOI] [PubMed] [Google Scholar]
  8. Clementi F., Conti-Tronconi B., Peluchetti D., Morgutti M. Effect of denervation on the organization of the postsynaptic membrane of the electric organ of Torpedo marmorata. Brain Res. 1975 Jun 6;90(1):133–118. doi: 10.1016/0006-8993(75)90687-3. [DOI] [PubMed] [Google Scholar]
  9. DE ROBERTIS E. Submicroscopic changes of the synapse after nerve section in the acoustic ganglion of the guinea pig; an electron microscope study. J Biophys Biochem Cytol. 1956 Sep 25;2(5):503–512. doi: 10.1083/jcb.2.5.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dreyer F., Peper K. Density and dose-response curve of acetylcholine receptors in frog neuromuscular junction. Nature. 1975 Feb 20;253(5493):641–643. doi: 10.1038/253641a0. [DOI] [PubMed] [Google Scholar]
  11. Gentschev T., Sotelo C. Degenerative patterns in the ventral cochlear nucleus of the rat after primary deafferentation. An ultra-structural study. Brain Res. 1973 Nov 9;62(1):37–60. doi: 10.1016/0006-8993(73)90618-5. [DOI] [PubMed] [Google Scholar]
  12. Hartzell H. C., Fambrough D. M. Acetylcholine receptors. Distribution and extrajunctional density in rat diaphragm after denervation correlated with acetylcholine sensitivity. J Gen Physiol. 1972 Sep;60(3):248–262. doi: 10.1085/jgp.60.3.248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Koerber K. C., Pfeiffer R. R., Warr W. B., Kiang N. Y. Spontaneous spike discharges from single units in the cochlear nucleus after destruction of the cochlea. Exp Neurol. 1966 Oct;16(2):119–130. doi: 10.1016/0014-4886(66)90091-4. [DOI] [PubMed] [Google Scholar]
  14. Kuffler S. W., Dennis M. J., Harris A. J. The development of chemosensitivity in extrasynaptic areas of the neuronal surface after denervation of parasympathetic ganglion cells in the heart of the frog. Proc R Soc Lond B Biol Sci. 1971 Apr 27;177(1049):555–563. doi: 10.1098/rspb.1971.0047. [DOI] [PubMed] [Google Scholar]
  15. Landis D. M., Reese T. S. Differences in membrane structure between excitatory and inhibitory synapses in the cerebellar cortex. J Comp Neurol. 1974 May 1;155(1):93–125. doi: 10.1002/cne.901550107. [DOI] [PubMed] [Google Scholar]
  16. Landis D. M., Reese T. S., Raviola E. Differences in membrane structure between excitatory and inhibitory components of the reciprocal synapse in the olfactory bulb. J Comp Neurol. 1974 May 1;155(1):67–91. doi: 10.1002/cne.901550106. [DOI] [PubMed] [Google Scholar]
  17. Lenn N. J., Reese T. S. The fine structure of nerve endings in the nucleus of the trapezoid body and the ventral cochlear nucleus. Am J Anat. 1966 Mar;118(2):375–389. doi: 10.1002/aja.1001180205. [DOI] [PubMed] [Google Scholar]
  18. Lomo T., Rosenthal J. Control of ACh sensitivity by muscle activity in the rat. J Physiol. 1972 Mar;221(2):493–513. doi: 10.1113/jphysiol.1972.sp009764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lomo T., Westgaard R. H. Control of ACh sensitivity in rat muscle fibers. Cold Spring Harb Symp Quant Biol. 1976;40:263–274. doi: 10.1101/sqb.1976.040.01.027. [DOI] [PubMed] [Google Scholar]
  20. Lomo T., Westgaard R. H. Further studies on the control of ACh sensitivity by muscle activity in the rat. J Physiol. 1975 Nov;252(3):603–626. doi: 10.1113/jphysiol.1975.sp011161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. MILEDI R. Junctional and extra-junctional acetylcholine receptors in skeletal muscle fibres. J Physiol. 1960 Apr;151:24–30. [PMC free article] [PubMed] [Google Scholar]
  22. MILEDI R. Properties of regenerating neuromuscular synapses in the frog. J Physiol. 1960 Nov;154:190–205. doi: 10.1113/jphysiol.1960.sp006573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. MILEDI R. The acetylcholine sensitivity of frog muscle fibres after complete or partial devervation. J Physiol. 1960 Apr;151:1–23. [PMC free article] [PubMed] [Google Scholar]
  24. Michaelson D. M., Duguid J. R., Miller D. L., Raftery M. A. Reconstitution of a purified acetylcholine receptor. J Supramol Struct. 1976;4(3):419–425. doi: 10.1002/jss.400040312. [DOI] [PubMed] [Google Scholar]
  25. POWELL T. P., ERULKAR S. D. Transneuronal cell degeneration in the auditory relay nuclei of the cat. J Anat. 1962 Apr;96:249–268. [PMC free article] [PubMed] [Google Scholar]
  26. Peracchia C., Dulhunty A. F. Low resistance junctions in crayfish. Structural changes with functional uncoupling. J Cell Biol. 1976 Aug;70(2 Pt 1):419–439. doi: 10.1083/jcb.70.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pinto da Silva P., Branton D. Membrane intercalated particles: the plasma membrane as a planar fluid domain. Chem Phys Lipids. 1972 May;8(4):265–278. doi: 10.1016/0009-3084(72)90054-0. [DOI] [PubMed] [Google Scholar]
  28. Pinto da Silva P., Douglas S. D., Branton D. Localization of A antigen sites on human erythrocyte ghosts. Nature. 1971 Jul 16;232(5307):194–196. doi: 10.1038/232194a0. [DOI] [PubMed] [Google Scholar]
  29. Rash J. E., Ellisman M. H. Studies of excitable membranes. I. Macromolecular specializations of the neuromuscular junction and the nonjunctional sarcolemma. J Cell Biol. 1974 Nov;63(2 Pt 1):567–586. doi: 10.1083/jcb.63.2.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Raviola E., Gilula N. B. Intramembrane organization of specialized contacts in the outer plexiform layer of the retina. A freeze-fracture study in monkeys and rabbits. J Cell Biol. 1975 Apr;65(1):192–222. doi: 10.1083/jcb.65.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Roper S. The acetylcholine sensitivity of the surface membrane of multiply-innervated parasympathetic ganglion cells in the mudpuppy before and after partial denervation. J Physiol. 1976 Jan;254(2):455–473. doi: 10.1113/jphysiol.1976.sp011240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rosenbluth J. Synaptic membrane structure in Torpedo electric organ. J Neurocytol. 1975 Dec;4(6):697–712. doi: 10.1007/BF01181631. [DOI] [PubMed] [Google Scholar]
  33. SHARPLESS S. K. REORGANIZATION OF FUNCTION IN THE NERVOUS SYSTEM--USE AND DISUSE. Annu Rev Physiol. 1964;26:357–388. doi: 10.1146/annurev.ph.26.030164.002041. [DOI] [PubMed] [Google Scholar]
  34. Sandri C., Akert K., Livingston R. B., Moor H. Particle aggregations at specialized sites in freeze-etched postsynaptic membranes. Brain Res. 1972 Jun 8;41(1):1–16. doi: 10.1016/0006-8993(72)90612-9. [DOI] [PubMed] [Google Scholar]
  35. Sharpless S. K. Supersensitivity-like phenomena in the central nervous system. Fed Proc. 1975 Sep;34(10):1990–1997. [PubMed] [Google Scholar]
  36. Sotelo C. Permanence and fate of paramembranous synaptic specializations in "mutants" experimental animals. Brain Res. 1973 Nov 23;62(2):345–351. doi: 10.1016/0006-8993(73)90695-1. [DOI] [PubMed] [Google Scholar]
  37. Sotelo C. Permanence of postsynaptic specializations in the frog sympathetic ganglion cells after denervation. Exp Brain Res. 1968;6(4):294–305. doi: 10.1007/BF00233181. [DOI] [PubMed] [Google Scholar]
  38. Waxman S. G., Pappas G. D. Pinocytosis at postsynaptic membranes: electron microscopic evidence. Brain Res. 1969 Jun;14(1):240–244. doi: 10.1016/0006-8993(69)90048-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES