Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1977 Dec 1;75(3):899–914. doi: 10.1083/jcb.75.3.899

Isolation and characterization of plasma membrane-associated cortical granules from sea urchin eggs

NK Detering, GL Decker, ED Schmell, WJ Lennarz
PMCID: PMC2111596  PMID: 562888

Abstract

Cortical granules, which are specialized secretory organelles found in ova of many organisms, have been isolated from the eggs of the sea urchins Arbacia punctulata and Strongylocentrtus pupuratus by a simple, rapid procedure. Electron micropscope examination of cortical granules prepared by this procedure reveals that they are tightly attached to large segments of the plasma membrane and its associated vitelline layer. Further evidence that he cortical granules were associated with these cell surface layers was obtained by (125)I-labeling techniques. The cortical granule preparations were found to be rich in proteoesterase, which was purified 32-fold over that detected in a crude homogenate. Similarly, the specific radioactivity of a (125)I-labeled, surface glycoprotein was increased 40-fold. These facts, coupled with electron microscope observations, indicate the isolation procedure yields a preparation in which both the cortical granules and the plasma membrane-vitelline layer are purified to the same extent. Gel electrophoresis of the membrane-associated cortical granule preparation reveals the presence of at least eight polypeptides. The major polypeptide, which is a glycotprotein of apparent mol wt of 100,000, contains most of the radioactivity introduced by (125)I-labeling of the intact eggs. Lysis of the cortical granules is observed under hypotonic conditions, or under isotonic conditions if Ca(2+) ion is present. When lysis is under isotonic conditions is induced by addition of Ca(2+) ion, the electron-dense contents of the granules remain insoluble. In contrast, hypotonic lysis results in release of the contents of the granule in a soluble form. However, in both cases the (125)I-labeled glycoprotein remains insoluble, presumably because it is a component of either the plasma membrane or the vitelline layer. All these findings indicate that, using this purified preparation, it should be possible to carry out in vitro studies to better define some of the initial, surface-related events observed in vivo upon fertilization.

Full Text

The Full Text of this article is available as a PDF (3.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AFZELIUS B. A. The ultrastructure of the cortical granules and their products in the sea urchin egg as studied with the electron microscope. Exp Cell Res. 1956 Apr;10(2):257–285. doi: 10.1016/0014-4827(56)90001-5. [DOI] [PubMed] [Google Scholar]
  2. ALLEN R. D. The fertilization reaction in isolated cortical material from sea urchin eggs. Exp Cell Res. 1955 Apr;8(2):397–399. doi: 10.1016/0014-4827(55)90150-6. [DOI] [PubMed] [Google Scholar]
  3. Anderson E. Oocyte differentiation in the sea urchin, Arbacia punctulata, with particular reference to the origin of cortical granules and their participation in the cortical reaction. J Cell Biol. 1968 May;37(2):514–539. doi: 10.1083/jcb.37.2.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carroll E. J., Jr, Epel D. Isolation and biological activity of the proteases released by sea urchin eggs following fertilization. Dev Biol. 1975 May;44(1):22–32. doi: 10.1016/0012-1606(75)90373-5. [DOI] [PubMed] [Google Scholar]
  5. Decker G. L., Joseph D. B., Lennarz W. J. A study of factors involved in induction of the acrosomal reaction in sperm of the sea urchin, Arbacia punctulata. Dev Biol. 1976 Oct 1;53(1):115–125. doi: 10.1016/0012-1606(76)90213-x. [DOI] [PubMed] [Google Scholar]
  6. ENDO Y. The role of the cortical granules in the formation of the fertilization membrane in the eggs of sea urchins. II. Exp Cell Res. 1961 Dec;25:518–528. doi: 10.1016/0014-4827(61)90187-2. [DOI] [PubMed] [Google Scholar]
  7. Epel D., Weaver A. M., Muchmore A. V., Schimke R. T. Beta-1,3-glucanase of sea urchin eggs: release from particles at fertilization. Science. 1969 Jan 17;163(3864):294–296. doi: 10.1126/science.163.3864.294. [DOI] [PubMed] [Google Scholar]
  8. Fodor E. J., Ako H., Walsh K. A. Isolation of a protease from sea urchin eggs before and after fertilization. Biochemistry. 1975 Nov 4;14(22):4923–4927. doi: 10.1021/bi00693a022. [DOI] [PubMed] [Google Scholar]
  9. Grossman A., Levy M., Troll W., Weissmann G. Redistribution of tosylarginine methylester hydrolase activity after fertilization of sea urchin (Arbacia punctulata) eggs. Nat New Biol. 1973 Jun 27;243(130):277–278. doi: 10.1038/newbio243277a0. [DOI] [PubMed] [Google Scholar]
  10. ISHIHARA K. RELEASE OF ACID POLYSACCHARIDES FOLLOWING FERTILIZATION OF SEA URCHIN EGGS. A CHEMICAL STUDY OF CHANGES IN THE CELL SURFACE. Exp Cell Res. 1964 Nov;36:354–367. doi: 10.1016/0014-4827(64)90215-0. [DOI] [PubMed] [Google Scholar]
  11. Karp G. C., Solursh M. Acid mucopolysaccharide metabolism, the cell surface, and primary mesenchyme cell activity in the sea urchin embryo. Dev Biol. 1974 Nov;41(1):110–123. doi: 10.1016/0012-1606(74)90287-5. [DOI] [PubMed] [Google Scholar]
  12. Kent C., Krag S. S., Lennarz W. J. Procedure for the isolation of mutants of Bacillus subtilis with defective cytoplasmic membranes. J Bacteriol. 1973 Feb;113(2):874–883. doi: 10.1128/jb.113.2.874-883.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kobayasi T., Asboe-Hansen G. Ruthenium red staining of ultrathin sections of human mast-cell granules. J Microsc. 1971 Feb;93(1):55–60. doi: 10.1111/j.1365-2818.1971.tb02264.x. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Montelaro R. C., Rueckert R. R. A mechanism and an evaluation of surface specific iodination by the chloramine-T procedure. Arch Biochem Biophys. 1977 Jan 30;178(2):555–564. doi: 10.1016/0003-9861(77)90226-0. [DOI] [PubMed] [Google Scholar]
  16. Muchmore A. V., Epel D., Weaver A. M., Schimke R. T. Purification and properties of an exo-beta-D-1,3-glucanase from sea urchin eggs. Biochim Biophys Acta. 1969 May 27;178(3):551–560. doi: 10.1016/0005-2744(69)90224-1. [DOI] [PubMed] [Google Scholar]
  17. Roffman S., Sanocka U., Troll W. Sensitive proteolytic enzyme assay using differential solubilities of radioactive substrates and products in biphasic systems. Anal Biochem. 1970 Jul;36(1):11–17. doi: 10.1016/0003-2697(70)90326-x. [DOI] [PubMed] [Google Scholar]
  18. Schmell E., Earles B. J., Breaux C., Lennarz W. J. Identification of a sperm receptor on the surface of the eggs of the sea urchin Arbacia punctulata. J Cell Biol. 1977 Jan;72(1):35–46. doi: 10.1083/jcb.72.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schuel H., Kelly J. W., Berger E. R., Wilson W. L. Sulfated acid mucopolysaccharides in the cortical granules of eggs. Effects of quaternary ammonium salts on fertilization. Exp Cell Res. 1974 Sep;88(1):24–30. doi: 10.1016/0014-4827(74)90613-2. [DOI] [PubMed] [Google Scholar]
  20. Schuel H., Wilson W. L., Bressler R. S., Kelly J. W., Wilson J. R. Purification of cortical granules from unfertilized sea urchin egg homogenates by zonal centrifugation. Dev Biol. 1972 Nov;29(3):307–320. doi: 10.1016/0012-1606(72)90070-x. [DOI] [PubMed] [Google Scholar]
  21. Shapiro B. M. Limited proteolysis of some egg surface components is an early event following fertilization of the sea urchin, Strongylocentrotus purpuratus. Dev Biol. 1975 Sep;46(1):88–102. doi: 10.1016/0012-1606(75)90089-5. [DOI] [PubMed] [Google Scholar]
  22. Steinhardt R. A., Epel D. Activation of sea-urchin eggs by a calcium ionophore. Proc Natl Acad Sci U S A. 1974 May;71(5):1915–1919. doi: 10.1073/pnas.71.5.1915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Steinhardt R. A., Epel D., Carroll E. J., Jr, Yanagimachi R. Is calcium ionophore a universal activator for unfertilised eggs? Nature. 1974 Nov 1;252(5478):41–43. doi: 10.1038/252041a0. [DOI] [PubMed] [Google Scholar]
  24. Vacquier V. D., Tegner M. J., Epel D. Protease released from sea urchin eggs at fertilization alters the vitelline layer and aids in preventing polyspermy. Exp Cell Res. 1973 Jul;80(1):111–119. doi: 10.1016/0014-4827(73)90281-4. [DOI] [PubMed] [Google Scholar]
  25. Vacquier V. D. The isolation of intact cortical granules from sea urchin eggs: calcium lons trigger granule discharge. Dev Biol. 1975 Mar;43(1):62–74. doi: 10.1016/0012-1606(75)90131-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES