Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1975 Dec 1;67(3):789–800. doi: 10.1083/jcb.67.3.789

Temperature dependence of anaphase chromosome velocity and microtubule depolymerization

PMCID: PMC2111653  PMID: 1238405

Abstract

The time course of chromosome movement and decay of half-spindle birefringence retardation in anaphase have been precisely determined in the endosperm cell of a plant Tilia americana and in the egg of an animal Asterias forbesi. For each species, the anaphase retardation decay rate constant and chromosome velocity are similar exponential functions of temperature. Over the temperature range at which these cells can complete anaphase, chromosome velocity and retardation rate constant yield a positive linear relationship when plotted against each other. At the higher temperatures where the chromosomes move faster, the spindle retardation decays faster, even though the absolute spindle retardation is greater. Chromosome velocity thus parallels the anaphase spindle retardation decay rate, or rate of spindle microtubule depolymerization, rather than absolute spindle retardation, or the amount of microtubules in the spindle. These observations suggest that a common mechanism exists for mitosis in plant and animal cells. The rate of anaphase chromosome movement is associated with an apparent first-order process of spindle fiber disassembly. This process irreversibly prevents spindle fiber subunits from participating in the polymerization equilibrium and removes microtubular subunits from chromosomal spindle fibers.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAJER A. A note on the behaviour of spindle fibres at mitosis. Chromosoma. 1961;12:64–71. doi: 10.1007/BF00328914. [DOI] [PubMed] [Google Scholar]
  2. Bajer A., Allen R. D. Structure and organization of the living mitotic spindle of Haemanthus endosperm. Science. 1966 Feb 4;151(3710):572–574. doi: 10.1126/science.151.3710.572. [DOI] [PubMed] [Google Scholar]
  3. Crozier W. J. THE DISTRIBUTION OF TEMPERATURE CHARACTERISTICS FOR BIOLOGICAL PROCESSES; CRITICAL INCREMENTS FOR HEART RATES. J Gen Physiol. 1926 Mar 20;9(4):531–546. doi: 10.1085/jgp.9.4.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fuseler J. W. Repetitive procurement of mature gametes from individual sea stars and sea urchins. J Cell Biol. 1973 Jun;57(3):879–881. doi: 10.1083/jcb.57.3.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. INOUE S., BAJER A. Birefringence in endosperm mitosis. Chromosoma. 1961;12:48–63. doi: 10.1007/BF00328913. [DOI] [PubMed] [Google Scholar]
  6. Inoué S., Fuseler J., Salmon E. D., Ellis G. W. Functional organization of mitotic microtubules. Physical chemistry of the in vivo equilibrium system. Biophys J. 1975 Jul;15(7):725–744. doi: 10.1016/S0006-3495(75)85850-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Inoué S., Sato H. Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement. J Gen Physiol. 1967 Jul;50(6 Suppl):259–292. [PMC free article] [PubMed] [Google Scholar]
  8. Margulis L. Colchicine-sensitive microtubules. Int Rev Cytol. 1973;34:333–361. doi: 10.1016/s0074-7696(08)61939-7. [DOI] [PubMed] [Google Scholar]
  9. Nicklas R. B., Staehly C. A. Chromosome micromanipulation. I. The mechanics of chromosome attachment to the spindle. Chromosoma. 1967;21(1):1–16. doi: 10.1007/BF00330544. [DOI] [PubMed] [Google Scholar]
  10. RIS H. The anaphase movement of chromosomes in the spermatocytes of the grasshopper. Biol Bull. 1949 Feb;96(1):90–106. [PubMed] [Google Scholar]
  11. Rebhun L. I., Sawada N. Augmentation and dispersion of the in vivo mitotic apparatus of living marine eggs. Protoplasma. 1969;68(1):1–22. doi: 10.1007/BF01247894. [DOI] [PubMed] [Google Scholar]
  12. Stephens R. E. A thermodynamic analysis of mitotic spindle equilibrium at active metaphase. J Cell Biol. 1973 Apr;57(1):133–147. doi: 10.1083/jcb.57.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES