Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1975 Dec 1;67(3):551–565. doi: 10.1083/jcb.67.3.551

Structural changes in the membrane of vero cells infected with a paramyxovirus

PMCID: PMC2111660  PMID: 1202014

Abstract

Vero cells productively infected with the Halle strain of measles virus have been studied by means of surface replication, freeze-fracturing, and surface labeling with horseradish peroxidase-measles antibody conjugate in order to examine changes in the structure of the cell membrane during viral maturation. Early in infection, the surfaces of infected cells are embossed by scattered groups of twisted strands, and diffuse patches of label for viral antigens cover regions marked by these strands. At later stages, when numerous nucleocapsids become aligned under the plasmalemmal strands, the strands increase in number and width and become more convoluted. At this stage, label for viral antigens on the surface of the cell membrane is organized into stripes lying on the crests of strands. Finally, regions of the membrane displaying twisted strands protrude to form ridges or bulges, and the freeze-fractured membrane surrounding these protrusions is characterized by an abundance of particles small than those found on the rest of the cell membrane. The fractured membranes of viral buds are continuous sheets of these small particles, and the spacing between both nucleocapsids and stripes of surface antigen in buds is less than in the surrounding cell membrane. Detached virus is covered with a continuous layer of viral antigen, has unusually large but no small particles on its membrane surfaces exposed by freeze-fracturing, and no longer has nucleocapsids aligned under its surface. Thus, surface antigens, membrane particles, and nucleocapsids attached to the cell membrane are mobile within the plane of the membrane during viral maturation. All three move simutaneously in preparation for viral budding.

Full Text

The Full Text of this article is available as a PDF (6.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avrameas S., Ternynck T. Peroxidase labelled antibody and Fab conjugates with enhanced intracellular penetration. Immunochemistry. 1971 Dec;8(12):1175–1179. doi: 10.1016/0019-2791(71)90395-8. [DOI] [PubMed] [Google Scholar]
  2. Birdwell C. R., Strauss E. G., Strauss J. H. Replication of Sindbis virus. 3. An electron microscopic study of virus maturation using the surface replica technique. Virology. 1973 Dec;56(2):429–438. doi: 10.1016/0042-6822(73)90047-0. [DOI] [PubMed] [Google Scholar]
  3. Birdwell C. R., Strauss J. H. Distribution of the receptor sites for Sindbis virus on the surface of chicken and BHK cells. J Virol. 1974 Sep;14(3):672–678. doi: 10.1128/jvi.14.3.672-678.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Birdwell C. R., Strauss J. H. Maturation of vesicular stomatitis virus: electron microscopy of surface replicas of infected cells. Virology. 1974 Jun;59(2):587–590. doi: 10.1016/0042-6822(74)90471-1. [DOI] [PubMed] [Google Scholar]
  5. Birdwell C. R., Strauss J. H. Replication of Sindbis virus. IV. Electron microscope study of the insertion of viral glycoproteins into the surface of infected chick cells. J Virol. 1974 Aug;14(2):366–374. doi: 10.1128/jvi.14.2.366-374.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown D. T., Waite M. R., Pfefferkorn E. R. Morphology and morphogenesis of Sindbis virus as seen with freeze-etching techniques. J Virol. 1972 Sep;10(3):524–536. doi: 10.1128/jvi.10.3.524-536.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bächi T., Gerhard W., Lindenmann J., Mühlethaler K. Morphogenesis of influenza A virus in Ehrlich ascites tumor cells as revealed by thin-sectioning and freeze-etching. J Virol. 1969 Nov;4(5):769–776. doi: 10.1128/jvi.4.5.769-776.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Demsey A., Steere R. L., Brandt W. E., Veltri B. J. Morphology and development of dengue-2 virus employing the freeze-fracture and thin-section techniques. J Ultrastruct Res. 1974 Jan;46(1):103–116. doi: 10.1016/s0022-5320(74)80025-0. [DOI] [PubMed] [Google Scholar]
  9. Dubois-Dalcq M., Barbosa L. H., Hamilton R., Sever J. L. Comparison between productive and latent subacute sclerosing panencephalitis viral infection in vitro. An electron microscopic and immunoperoxidase study. Lab Invest. 1974 Mar;30(3):241–250. [PubMed] [Google Scholar]
  10. Dubois-Dalcq M., Barbosa L. H. Immunoperoxidase stain of measles antigen in tissue culture. J Virol. 1973 Oct;12(4):909–918. doi: 10.1128/jvi.12.4.909-918.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hamilton R., Barbosa L., Dubois M. Subacute sclerosing panencephalitis measles virus: study of biological markers. J Virol. 1973 Sep;12(3):632–642. doi: 10.1128/jvi.12.3.632-642.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Horta-Barbosa L., Fuccillo D. A., Sever J. L., Zeman W. Subacute sclerosing panencephalitis: isolation of measles virus from a brain biopsy. Nature. 1969 Mar 8;221(5184):974–974. doi: 10.1038/221974a0. [DOI] [PubMed] [Google Scholar]
  13. Horta-Barbosa L., Hamilton R., Wittig B., Fuccillo D. A., Sever J. L., Vernon M. L. Subacute sclerosing panencephalitis: isolation of suppressed measles virus from lymph node biopsies. Science. 1971 Aug 27;173(3999):840–841. doi: 10.1126/science.173.3999.840. [DOI] [PubMed] [Google Scholar]
  14. Howe C., Morgan C., de Vaux St Cyr C., Hsu K. C., Rose H. M. Morphogenesis of type 2 parainfluenza virus examined by light and electron microscopy. J Virol. 1967 Feb;1(1):215–237. doi: 10.1128/jvi.1.1.215-237.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Karnovsky M. J., Unanue E. R., Leventhal M. Ligand-induced movement of lymphocyte membrane macromolecules. II. Mapping of surface moieties. J Exp Med. 1972 Oct 1;136(4):907–930. doi: 10.1084/jem.136.4.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nakai M., Imagawa D. T. Electron microscopy of measles virus replication. J Virol. 1969 Feb;3(2):187–197. doi: 10.1128/jvi.3.2.187-197.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nakai T., Shand F. L., Howatson A. F. Development of measles virus in vitro. Virology. 1969 May;38(1):50–67. doi: 10.1016/0042-6822(69)90127-5. [DOI] [PubMed] [Google Scholar]
  18. Nermut M. V., Frank H. Fine structure of influenza A2 (Singapore) as revealed by negative staining, freeze-drying and freeze-etching. J Gen Virol. 1971 Jan;10(1):37–51. doi: 10.1099/0022-1317-10-1-37. [DOI] [PubMed] [Google Scholar]
  19. Nermut M. V., Frank H., Schäfer W. Properties of mouse leukemia viruses. 3. Electron microscopic appearance as revealed after conventional preparation techniques as well as freeze-drying and freeze-etching. Virology. 1972 Aug;49(2):345–358. doi: 10.1016/0042-6822(72)90487-4. [DOI] [PubMed] [Google Scholar]
  20. Phillips E. R., Perdue J. F. Ultrastructural distribution of cell surface antigens in avian tumor virus-infected chick embryo fibroblasts. J Cell Biol. 1974 Jun;61(3):743–756. doi: 10.1083/jcb.61.3.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pinto da Silva P., Branton D. Membrane splitting in freeze-ethching. Covalently bound ferritin as a membrane marker. J Cell Biol. 1970 Jun;45(3):598–605. doi: 10.1083/jcb.45.3.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pinto da Silva P., Douglas S. D., Branton D. Localization of A antigen sites on human erythrocyte ghosts. Nature. 1971 Jul 16;232(5307):194–196. doi: 10.1038/232194a0. [DOI] [PubMed] [Google Scholar]
  23. Raine C. S., Feldman L. A., Sheppard R. D., Barbosa L. H., Bornstein M. B. Subacute sclerosing panencephalitis virus. Observations on a neuroadapted and non-neuroadapted strain in organotypic central nervous system cultures. Lab Invest. 1974 Jul;31(1):42–53. [PubMed] [Google Scholar]
  24. Raine C. S., Feldman L. A., Sheppard R. D., Bornstein M. B. Subacute sclerosing panencephalitis virus in cultures of organized central nervous tissue. Lab Invest. 1973 May;28(5):627–640. [PubMed] [Google Scholar]
  25. Raine C. S., Feldman L. A., Sheppard R. D., Bornstein M. B. Ultrastructural study of long-term measles infection in cultures of hamster dorsal-root ganglion. J Virol. 1971 Sep;8(3):318–329. doi: 10.1128/jvi.8.3.318-329.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Reese T. S., Karnovsky M. J. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol. 1967 Jul;34(1):207–217. doi: 10.1083/jcb.34.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Scheid A., Choppin P. W. Identification of biological activities of paramyxovirus glycoproteins. Activation of cell fusion, hemolysis, and infectivity of proteolytic cleavage of an inactive precursor protein of Sendai virus. Virology. 1974 Feb;57(2):475–490. doi: 10.1016/0042-6822(74)90187-1. [DOI] [PubMed] [Google Scholar]
  28. Sheffield J. B. Envelope of mouse mammary tumor virus studied by freeze-etching and freeze-fracture techniques. J Virol. 1973 Sep;12(3):616–624. doi: 10.1128/jvi.12.3.616-624.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sheffield J. B. Membrane alterations which accompany MuMTV maturation. I. Studies by freeze-cleave techniques. Virology. 1974 Jan;57(1):287–290. doi: 10.1016/0042-6822(74)90130-5. [DOI] [PubMed] [Google Scholar]
  30. Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
  31. Smith S. B., Revel J. P. Mapping of concanavalin A binding sites on the surface of several cell types. Dev Biol. 1972 Mar;27(3):434–441. doi: 10.1016/0012-1606(72)90183-2. [DOI] [PubMed] [Google Scholar]
  32. Tillack T. W., Marchesi V. T. Demonstration of the outer surface of freeze-etched red blood cell membranes. J Cell Biol. 1970 Jun;45(3):649–653. doi: 10.1083/jcb.45.3.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tillack T. W., Scott R. E., Marchesi V. T. The structure of erythrocyte membranes studied by freeze-etching. II. Localization of receptors for phytohemagglutinin and influenza virus to the intramembranous particles. J Exp Med. 1972 Jun 1;135(6):1209–1227. doi: 10.1084/jem.135.6.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Van Harreveld A., Trubatch J., Steiner J. Rapid freezing and electron microscopy for the arrest of physiological processes. J Microsc. 1974 Mar;100(2):189–198. doi: 10.1111/j.1365-2818.1974.tb03928.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES