Abstract
Mouse kidneys were perfused with Krebs-Ringer bicarbonate buffer (KRB) containing native, anionic horse spleen ferritin or various cationized derivatives, and the glomerular localization of the probe molecules determined by electron microscopy. Ferritins cationic with respect to the medium (KRB, pH 7.45) accumulated in the subendothelial layers of the glomerular basement membrane (GBM) in amounts far exceeding those observed with anionic ferritins, the degree being greater for the more cationized derivatives. Strongly cationized ferritins, in addition permeated the full thickness of the GBM in considerable amounts, but appeared to be retarded from entry into the urinary spaces at the level of the filtration slits. Very strongly cationized derivatives adhered to glomerular endothelium and GBM and formed aggregates in the outer layers of the latter. The results suggest that intrinsic negative charges are present in the GBM and endothelium, and that the barrier function of the glomerular capillary wall may be ascribed in part to its electrophysical properties.
Full Text
The Full Text of this article is available as a PDF (1.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ainsworth S. K., Karnovsky M. J. An ultrastructural staining method for enhancing the size and electron opacity of ferritin in thin sections. J Histochem Cytochem. 1972 Mar;20(3):225–229. doi: 10.1177/20.3.225. [DOI] [PubMed] [Google Scholar]
- Blau E. B., Michael A. F. Rat glomerular glycoprotein composition and metabolism in aminonucleoside nephrosis. Proc Soc Exp Biol Med. 1972 Oct;141(1):164–172. doi: 10.3181/00379727-141-36737. [DOI] [PubMed] [Google Scholar]
- Blau E., Michael A. F. Rat glomerular basement membrane composition and metabolism in aminonucleoside nephrosis. J Lab Clin Med. 1971 Jan;77(1):97–109. [PubMed] [Google Scholar]
- Caulfield J. P., Farquhar M. G. The permeability of glomerular capillaries to graded dextrans. Identification of the basement membrane as the primary filtration barrier. J Cell Biol. 1974 Dec;63(3):883–903. doi: 10.1083/jcb.63.3.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Danon D., Goldstein L., Marikovsky Y., Skutelsky E. Use of cationized ferritin as a label of negative charges on cell surfaces. J Ultrastruct Res. 1972 Mar;38(5):500–510. doi: 10.1016/0022-5320(72)90087-1. [DOI] [PubMed] [Google Scholar]
- FARRANT J. L. An electron microscopic study of ferritin. Biochim Biophys Acta. 1954 Apr;13(4):569–576. doi: 10.1016/0006-3002(54)90376-5. [DOI] [PubMed] [Google Scholar]
- Graham R. C., Jr, Karnovsky M. J. Glomerular permeability. Ultrastructural cytochemical studies using peroxidases as protein tracers. J Exp Med. 1966 Dec 1;124(6):1123–1134. doi: 10.1084/jem.124.6.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Groniowski J., Biczyskowa W., Walski M. Electron microscope studies on the surface coat of the nephron. J Cell Biol. 1969 Mar;40(3):585–601. doi: 10.1083/jcb.40.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haggis G. H. The iron oxide core of the ferritin molecule. J Mol Biol. 1965 Dec;14(2):598–602. doi: 10.1016/s0022-2836(65)80210-8. [DOI] [PubMed] [Google Scholar]
- Hoare D. G., Koshland D. E., Jr A method for the quantitative modification and estimation of carboxylic acid groups in proteins. J Biol Chem. 1967 May 25;242(10):2447–2453. [PubMed] [Google Scholar]
- Jones D. B. Mucosubstances of the glomerulus. Lab Invest. 1969 Aug;21(2):119–125. [PubMed] [Google Scholar]
- Karnovsky M. J., Ryan G. B. Substructure of the glomerular slit diaphragm in freeze-fractured normal rat kidney. J Cell Biol. 1975 Apr;65(1):233–236. doi: 10.1083/jcb.65.1.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kefalides N. A. Isolation and characterization of the collagen from glomerular basement membrane. Biochemistry. 1968 Sep;7(9):3103–3112. doi: 10.1021/bi00849a012. [DOI] [PubMed] [Google Scholar]
- Larsen B. Increased permeability to albumin induced with protamine in modified gelatine membranes. Nature. 1967 Aug 5;215(5101):641–642. doi: 10.1038/215641a0. [DOI] [PubMed] [Google Scholar]
- Michael A. F., Blau E., Vernier R. L. Glomerular polyanion. Alteration in aminonucleoside nephrosis. Lab Invest. 1970 Dec;23(6):649–657. [PubMed] [Google Scholar]
- Misra R. P., Berman L. B. Studies on glomerular basement membrane. 1. Isolation and chemical analysis of normal glomerular basement membrane. Proc Soc Exp Biol Med. 1966 Jul;122(3):705–710. doi: 10.3181/00379727-122-31232. [DOI] [PubMed] [Google Scholar]
- Mohos S. C., Skoza L. Glomerular sialoprotein. Science. 1969 Jun 27;164(3887):1519–1521. doi: 10.1126/science.164.3887.1519. [DOI] [PubMed] [Google Scholar]
- Mohos S. C., Skoza L. Histochemical demonstration and localization of sialoproteins in the glomerulus. Exp Mol Pathol. 1970 Jun;12(3):316–323. doi: 10.1016/0014-4800(70)90063-8. [DOI] [PubMed] [Google Scholar]
- Pinto da Silva P., Fudenberg H. H. Anionic sites on the membrane intercalated particles of human erythrocyte ghost membranes. Freeze-etch localization. Exp Cell Res. 1973 Sep;81(1):127–138. doi: 10.1016/0014-4827(73)90119-5. [DOI] [PubMed] [Google Scholar]
- Righetti P. G., Drysdale J. W. Isoelectric focusing in gels. J Chromatogr. 1974 Sep 25;98(2):271–321. doi: 10.1016/s0021-9673(00)92076-4. [DOI] [PubMed] [Google Scholar]
- Rodewald R., Karnovsky M. J. Porous substructure of the glomerular slit diaphragm in the rat and mouse. J Cell Biol. 1974 Feb;60(2):423–433. doi: 10.1083/jcb.60.2.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seiler M. W., Venkatachalam M. A., Cotran R. S. Glomerular epithelium: structural alterations induced by polycations. Science. 1975 Aug 1;189(4200):390–393. doi: 10.1126/science.1145209. [DOI] [PubMed] [Google Scholar]
- Spiro R. G. Studies on the renal glomerular basement membrane. Preparation and chemical composition. J Biol Chem. 1967 Apr 25;242(8):1915–1922. [PubMed] [Google Scholar]
- Venkatachalam M. A., Karnovsky M. J., Fahimi H. D., Cotran R. S. An ultrastructural study of glomerular permeability using catalase and peroxidase as tracer proteins. J Exp Med. 1970 Dec 1;132(6):1153–1167. doi: 10.1084/jem.132.6.1153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WALLENIUS G. [Renal clearance of dextran as a measure of glomerular permeability]. Acta Soc Med Ups Suppl. 1954 Apr 8;59(4):1–91. [PubMed] [Google Scholar]
- Westberg N. G., Michael A. F. Human glomerular basement membrane. Preparation and composition. Biochemistry. 1970 Sep 15;9(19):3837–3846. doi: 10.1021/bi00821a025. [DOI] [PubMed] [Google Scholar]