Abstract
Glycosaminoglycan synthesis and secretion by primate arterial smooth muscle have been examined in cell culture. Mass cultures of diploid primate arterial smooth muscle cells were either double labeled with [35S]sulfate and [3H]acetate or single labeled with [3H]glucosamine for 24 h and glycosaminoglycans were extracted and isolated from the culture medium. Incorporation of labeled precursors into glycosaminoglycan was maximal during stationary phase of smooth muscle cell growth in culture and reduced, but not eliminated during logarithmic growth. The glycosaminoglycans synthesized and secreted into the culture medium were characterized by differential susceptibility to glycosaminoglycan-degradative enzymes and by cellulose acetate electrophoresis. Both assay procedures indicate that cultured primate arterial smooth muscle cells synthesize principally dermatan sulfate (60%-80% of total), chondroitin sulfate A and/or C (10%-20%of total) and little or no hyaluronic acid (0%-5% of total). This pattern of glycosaminoglycan formation differed significantly from that exhibited by isologous skin fibroblasts cultured under identical conditions. Dermal fibroblasts synthesize and secrete primarily hyaluronic acid (50%-60% of total) with lesser amounts of dermatan sulfate (10%-20% of total) and chondroitin sulfate A and/or C (10%-20% of total). These results indicate that differences exist in proteoglycan metabolism between these two connective tissue-producing cells in vitro, and suggest that the observed pattern of in vitro glycosaminoglycan synthesis by primate arterial smooth muscle cells may be characteristic for this cell type and not a general response to conditions of cell culture.
Full Text
The Full Text of this article is available as a PDF (891.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BERENSON G. S. A study of acid mucopolysaccharides of bovine aorta with the aid of a chromatographic procedure for separating sulfated mucopolysaccharides. Biochim Biophys Acta. 1958 Apr;28(1):176–183. doi: 10.1016/0006-3002(58)90444-x. [DOI] [PubMed] [Google Scholar]
- Bach G., Friedman R., Weissmann B., Neufeld E. F. The defect in the Hurler and Scheie syndromes: deficiency of -L-iduronidase. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2048–2051. doi: 10.1073/pnas.69.8.2048. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berenson G. S., Radhakrishnamurthy B., Dalferes E. R., Jr, Srinivasan S. R. Carbohydrate macromolecules and atherosclerosis. Hum Pathol. 1971 Mar;2(1):57–79. doi: 10.1016/s0046-8177(71)80021-7. [DOI] [PubMed] [Google Scholar]
- Buonassisi V. Sulfated mucopolysaccharide synthesis and secretion in endothelial cell cultures. Exp Cell Res. 1973 Feb;76(2):363–368. doi: 10.1016/0014-4827(73)90388-1. [DOI] [PubMed] [Google Scholar]
- Cahn R. D., Lasher R. Simultaneous synthesis of DNA and specialized cellular products by differentiating cartilage cells in vitro. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1131–1138. doi: 10.1073/pnas.58.3.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dalferes E. R., Jr, Ruiz H., Kumar V., Radhakrishnamurthy B., Berenson G. S. Acid mucopolysaccharides of fatty streaks in young, human male aortas. Atherosclerosis. 1971 Jan-Feb;13(1):121–131. doi: 10.1016/0021-9150(71)90013-x. [DOI] [PubMed] [Google Scholar]
- Engel U. R. Glycosaminoglycans in the aorta of six animal species. A chemical and morphological comparison of their topographical distribution. Atherosclerosis. 1971 Jan-Feb;13(1):45–60. doi: 10.1016/0021-9150(71)90005-0. [DOI] [PubMed] [Google Scholar]
- GROSSMAN B. J., DORFMAN A. In vitro comparison of the antithrombic action of heparin and chondroitinsulfuric acid-B. Pediatrics. 1957 Sep;20(3):506–514. [PubMed] [Google Scholar]
- Gessner I. H., Lorincz A. E., Boström H. Acid mucopolysaccharide content of the cardiac jelly of the chick embryo. J Exp Zool. 1965 Dec;160(3):291–298. doi: 10.1002/jez.1401600307. [DOI] [PubMed] [Google Scholar]
- Helin P., Lorenzen I., Garbarsch C., Matthiessen M. E. Repair in arterial tissue. Morphological and biochemical changes in rabbit aorta after a single dilatation injury. Circ Res. 1971 Nov;29(5):542–554. doi: 10.1161/01.res.29.5.542. [DOI] [PubMed] [Google Scholar]
- Hermelin B., Picard J., Paul-Gardais A., Levy P. Turnover of sulfated glycosaminoglycans in the rat aortic wall. Comp Biochem Physiol B. 1974 Sep 15;49(1B):113–118. doi: 10.1016/0305-0491(74)90230-2. [DOI] [PubMed] [Google Scholar]
- Holliday R., Pugh J. E. DNA modification mechanisms and gene activity during development. Science. 1975 Jan 24;187(4173):226–232. [PubMed] [Google Scholar]
- Ichida T., Kalant N. Aortic glycosaminoglycans in atheroma and alloxan diabetes. Can J Biochem. 1968 Mar;46(3):249–260. doi: 10.1139/o68-036. [DOI] [PubMed] [Google Scholar]
- Iverius P. H. The interaction between human plasma lipoproteins and connective tissue glycosaminoglycans. J Biol Chem. 1972 Apr 25;247(8):2607–2613. [PubMed] [Google Scholar]
- KAPLAN D., MEYER K. Ageing of human cartilage. Nature. 1959 May 2;183(4670):1267–1268. doi: 10.1038/1831267a0. [DOI] [PubMed] [Google Scholar]
- KAPLAN D., MEYER K. Mucopolysaccharides of aorta at various ages. Proc Soc Exp Biol Med. 1960 Oct;105:78–81. doi: 10.3181/00379727-105-26015. [DOI] [PubMed] [Google Scholar]
- Kumar V., Berenson G. S., Ruiz H., Dalferes E. R., Jr, Strong J. P. Acid mucopolysaccharides of human aorta. 1. Variations with maturation. J Atheroscler Res. 1967 Sep-Oct;7(5):573–581. doi: 10.1016/s0368-1319(67)80035-8. [DOI] [PubMed] [Google Scholar]
- Kumar V., Berenson G. S., Ruiz H., Dalferes E. R., Jr, Strong J. P. Acid mucopolysaccharides of human aorta. 2. Variations with atherosclerotic involvement. J Atheroscler Res. 1967 Sep-Oct;7(5):583–590. doi: 10.1016/s0368-1319(67)80036-x. [DOI] [PubMed] [Google Scholar]
- Lavietes B. B. Cellular interaction and chondrogenesis in vitro. Dev Biol. 1970 Apr;21(4):584–610. doi: 10.1016/0012-1606(70)90079-5. [DOI] [PubMed] [Google Scholar]
- Lavietes B. B. Kinetics of matrix synthesis in cartilage cell cultures. Exp Cell Res. 1971 Sep;68(1):43–48. doi: 10.1016/0014-4827(71)90584-2. [DOI] [PubMed] [Google Scholar]
- Lindahl U., Bäckström G., Malmström A., Fransson L. A. Biosynthesis of L-iduronic acid in heparin: epimerization of D-glucuronic acid on the polymer level. Biochem Biophys Res Commun. 1972 Jan 31;46(2):985–991. doi: 10.1016/s0006-291x(72)80238-9. [DOI] [PubMed] [Google Scholar]
- Manasek F. J., Reid M., Vinson W., Seyer J., Johnson R. Glycosaminoglycan synthesis by the early embryonic chick heart. Dev Biol. 1973 Dec;35(2):332–348. doi: 10.1016/0012-1606(73)90028-6. [DOI] [PubMed] [Google Scholar]
- Mathews M. B., Glagov S. Acid mucopolysaccharide patterns in aging human cartilage. J Clin Invest. 1966 Jul;45(7):1103–1111. doi: 10.1172/JCI105416. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mayne R., Abbott J., Holtzer H. Requirement for cell proliferation for the effects of 5-bromo-2'-deoxyuridine on cultures of chick chondrocytes. Exp Cell Res. 1973 Mar 15;77(1):255–263. doi: 10.1016/0014-4827(73)90575-2. [DOI] [PubMed] [Google Scholar]
- Meier S., Hay E. D. Control of corneal differentiation by extracellular materials. Collagen as a promoter and stabilizer of epithelial stroma production. Dev Biol. 1974 Jun;38(2):249–270. doi: 10.1016/0012-1606(74)90005-0. [DOI] [PubMed] [Google Scholar]
- Meier S., Hay E. D. Stimulation of extracellular matrix synthesis in the developing cornea by glycosaminoglycans. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2310–2313. doi: 10.1073/pnas.71.6.2310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meier S., Hay E. D. Synthesis of sulfated glycosaminoglycans by embryonic corneal epithelium. Dev Biol. 1973 Dec;35(2):318–331. doi: 10.1016/0012-1606(73)90027-4. [DOI] [PubMed] [Google Scholar]
- Meyer K. Biochemistry and biology of mucopolysaccharides. Am J Med. 1969 Nov;47(5):664–672. doi: 10.1016/0002-9343(69)90162-4. [DOI] [PubMed] [Google Scholar]
- Muir H. Chemistry and metabolism of connective tissue glycosaminoglycans (mucopolysaccharides). Int Rev Connect Tissue Res. 1964;2:101–154. doi: 10.1016/b978-1-4831-6751-0.50009-4. [DOI] [PubMed] [Google Scholar]
- Murata K., Nakazawa K., Hamai A. Distribution of acidic glycosaminoglycans in the intima, media and adventitia of bovine aorta and their anticoagulant properties. Atherosclerosis. 1975 Jan-Feb;21(1):93–103. doi: 10.1016/0021-9150(75)90096-9. [DOI] [PubMed] [Google Scholar]
- Nameroff M., Holtzer H. The loss of phenotypic traits by differentiated cells. IV. Changes in polysaccharides produced by dividing chondrocytes. Dev Biol. 1967 Sep;16(3):250–281. doi: 10.1016/0012-1606(67)90026-7. [DOI] [PubMed] [Google Scholar]
- Nevo Z., Dorfman A. Stimulation of chondromucoprotein synthesis in chondrocytes by extracellular chondromucoprotein. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2069–2072. doi: 10.1073/pnas.69.8.2069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pawelek J. M. Effects of thyroxine and low oxygen tension on chondrogenic expression in cell culture. Dev Biol. 1969 Jan;19(1):52–72. doi: 10.1016/0012-1606(69)90070-0. [DOI] [PubMed] [Google Scholar]
- Radhakrishnamurthy B., Eggen D. A., Kokatnur M., Jirge S., Strong J. P., Berenson G. S. Composition of connective tissue in aortas from rhesus monkeys during regression of diet-induced fatty streaks. Lab Invest. 1975 Aug;33(2):136–140. [PubMed] [Google Scholar]
- Ross R., Glomset J. A. Atherosclerosis and the arterial smooth muscle cell: Proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science. 1973 Jun 29;180(4093):1332–1339. doi: 10.1126/science.180.4093.1332. [DOI] [PubMed] [Google Scholar]
- Ross R., Glomset J., Kariya B., Harker L. A platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1207–1210. doi: 10.1073/pnas.71.4.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ross R., Klebanoff S. J. The smooth muscle cell. I. In vivo synthesis of connective tissue proteins. J Cell Biol. 1971 Jul;50(1):159–171. doi: 10.1083/jcb.50.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ross R. The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers. J Cell Biol. 1971 Jul;50(1):172–186. doi: 10.1083/jcb.50.1.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saito H., Yamagata T., Suzuki S. Enzymatic methods for the determination of small quantities of isomeric chondroitin sulfates. J Biol Chem. 1968 Apr 10;243(7):1536–1542. [PubMed] [Google Scholar]
- Shulman H. J., Meyer K. Cellular differentiation and the aging process in cartilaginous tissues. Mucopolysaccharide synthesis in cell cultures of chondrocytes. J Exp Med. 1968 Dec 1;128(6):1353–1362. doi: 10.1084/jem.128.6.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slomiany B. L., Meyer K. Isolation and structural studies of sulfated glycoproteins of hog gastric mucosa. J Biol Chem. 1972 Aug 25;247(16):5062–5070. [PubMed] [Google Scholar]
- Solursh M., Karp G. C. An effect of accumulated matrix on sulfation among cells in a cartilage colony: an autoradiographic study. J Exp Zool. 1975 Jan;191(1):73–84. doi: 10.1002/jez.1401910108. [DOI] [PubMed] [Google Scholar]
- Solursh M., Meier S. A conditioned medium (CM) factor produced by chondrocytes that promotes their own differentiation. Dev Biol. 1973 Feb;30(2):279–289. doi: 10.1016/0012-1606(73)90089-4. [DOI] [PubMed] [Google Scholar]
- Telser A., Robinson H. C., Dorfman A. The biosynthesis of chondroitin sulfate. Arch Biochem Biophys. 1966 Sep 26;116(1):458–465. doi: 10.1016/0003-9861(66)90053-1. [DOI] [PubMed] [Google Scholar]
- Toole B. P., Gross J. The extracellular matrix of the regenerating newt limb: synthesis and removal of hyaluronate prior to differentiation. Dev Biol. 1971 May;25(1):57–77. doi: 10.1016/0012-1606(71)90019-4. [DOI] [PubMed] [Google Scholar]
- Toole B. P., Lowther D. A. Dermatan sulfate-protein: isolation from and interaction with collagen. Arch Biochem Biophys. 1968 Dec;128(3):567–578. doi: 10.1016/0003-9861(68)90064-7. [DOI] [PubMed] [Google Scholar]
- Toole B. P., Trelstad R. L. Hyaluronate production and removal during corneal development in the chick. Dev Biol. 1971 Sep;26(1):28–35. doi: 10.1016/0012-1606(71)90104-7. [DOI] [PubMed] [Google Scholar]
- Wight T. N., Ross R. Proteoglycans in primate arteries. I. Ultrastructural localization and distribution in the intima. J Cell Biol. 1975 Dec;67(3):660–674. doi: 10.1083/jcb.67.3.660. [DOI] [PMC free article] [PubMed] [Google Scholar]