Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1975 Dec 1;67(3):501–517. doi: 10.1083/jcb.67.3.501

Microtubular origin of mitotic spindle form birefringence. Demonstration of the applicability of Wiener's equation

PMCID: PMC2111675  PMID: 1238403

Abstract

Meiosis I metaphase spindles were isolated from oocytes of the sea-star Pisaster ochraceus by a method that produced no detectable net loss in spindle birefringence. Some of the spindles were fixed immediately and embedded and sectioned for electron microscopy. Others were laminated between gelatine pellicles in a perfusion chamber, then fixed and sequentially and reversibly imbibed with a series of media of increasing refractive indices. Electron microscopy showed little else besides microtubules in the isolates, and no other component present could account for the observed form birefringence. An Ambronn plot of the birefringent retardation measured during imbibition was a good least squares fit to a computer generated theoretical curve based on the Bragg-Pippard rederivation of the Wiener curve for form birefringence. The data were best fit by the curve for rodlet index (n1) = 1.512, rodlet volume fraction (f) = 0.0206, and coefficient of intrinsic birefringence = 4.7 X 10(-5). The value obtained for n1 is unequivocal and is virtually as good as the refractometer determinations of imbibing medium index on which it is based. The optically interactive volume of the microtubule subunit, calculated from our electron microscope determination of spindle microtubule distribution (106/mum2), 13 protofilaments per microtubules, an 8 nm repeat distance and our best value for f, is compatible with known subunit dimensions as determined by other means. We also report curves fitted to the results of Ambronn imbibition of Bouin's-fixed Lytechinus spindles and to the Noll and Weber muscle imbibition data.

Full Text

The Full Text of this article is available as a PDF (2.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. D. Pattern of birefringence in the giant amoeba, Chaos carolinensis. Exp Cell Res. 1972 May;72(1):34–45. doi: 10.1016/0014-4827(72)90564-2. [DOI] [PubMed] [Google Scholar]
  2. Behnke O., Forer A. Some aspects of microtubules in spermatocyte meiosis in a crane fly (Nephrotoma suturalis Loew): intranuclear and intrachromosomal microtubules. C R Trav Lab Carlsberg. 1966;35(19):437–455. [PubMed] [Google Scholar]
  3. Bendet I. J., Bearden J., Jr Birefringence of spermatozoa. II. Form birefringence of bull sperm. J Cell Biol. 1972 Nov;55(2):501–510. doi: 10.1083/jcb.55.2.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bryan J., Sato H. The isolation of the meiosis in spindle from the mature oocyte of Pisaster ochraceus. Exp Cell Res. 1970 Mar;59(3):371–378. doi: 10.1016/0014-4827(70)90643-9. [DOI] [PubMed] [Google Scholar]
  5. Cassim J. Y., Taylor E. W. Intrinsic birefringence of poly-gamma-benzyl-L-glutamate, a helical polypeptide, and the theory of birefringence. Biophys J. 1965 Jul;5(4):531–552. doi: 10.1016/S0006-3495(65)86733-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cassim J. Y., Tobias P. S., Taylor E. W. Birefringence of muscle proteins and the problem of structural birefringence. Biochim Biophys Acta. 1968 Dec 3;168(3):463–471. doi: 10.1016/0005-2795(68)90180-3. [DOI] [PubMed] [Google Scholar]
  7. Cohen C., DeRosier D., Harrison S. C., Stephens R. E., Thomas J. X-ray patterns from microtubules. Ann N Y Acad Sci. 1975 Jun 30;253:53–59. doi: 10.1111/j.1749-6632.1975.tb19192.x. [DOI] [PubMed] [Google Scholar]
  8. Cohen C., Harrison S. C., Stephens R. E. X-ray diffraction from microtubules. J Mol Biol. 1971 Jul 28;59(2):375–380. doi: 10.1016/0022-2836(71)90057-x. [DOI] [PubMed] [Google Scholar]
  9. Colby R. H. Intrinsic birefringence of glycerinated myofibrils. J Cell Biol. 1971 Dec;51(3):763–771. doi: 10.1083/jcb.51.3.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Erickson H. P. Microtubule surface lattice and subunit structure and observations on reassembly. J Cell Biol. 1974 Jan;60(1):153–167. doi: 10.1083/jcb.60.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Forer A., Goldman R. D. The concentrations of dry matter in mitotic apparatuses in vivo and after isolation from sea-urchin zygotes. J Cell Sci. 1972 Mar;10(2):387–418. doi: 10.1242/jcs.10.2.387. [DOI] [PubMed] [Google Scholar]
  12. Goldman R. D., Rebhun L. I. The structure and some properties of the isolated mitotic apparatus. J Cell Sci. 1969 Jan;4(1):179–209. doi: 10.1242/jcs.4.1.179. [DOI] [PubMed] [Google Scholar]
  13. Grimstone A. V., Klug A. Observations on the substructure of flagellar fibres. J Cell Sci. 1966 Sep;1(3):351–362. doi: 10.1242/jcs.1.3.351. [DOI] [PubMed] [Google Scholar]
  14. INOUE S., HYDE W. L. Studies on depolarization of light at microscope lens surfaces. II. The simultaneous realization of high resolution and high sensitivity with the polarizing microscope. J Biophys Biochem Cytol. 1957 Nov 25;3(6):831–838. doi: 10.1083/jcb.3.6.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Inoué S., Borisy G. G., Kiehart D. P. Growth and lability of Chaetopterus oocyte mitotic spindles isolated in the presence of porcine brain tubulin. J Cell Biol. 1974 Jul;62(1):175–184. doi: 10.1083/jcb.62.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Inoué S., Fuseler J., Salmon E. D., Ellis G. W. Functional organization of mitotic microtubules. Physical chemistry of the in vivo equilibrium system. Biophys J. 1975 Jul;15(7):725–744. doi: 10.1016/S0006-3495(75)85850-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Inoué S., Sato H. Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement. J Gen Physiol. 1967 Jul;50(6 Suppl):259–292. [PMC free article] [PubMed] [Google Scholar]
  18. KANE R. E. THE MITOTIC APPARATUS. PHYSICAL-CHEMICAL FACTORS CONTROLLING STABILITY. J Cell Biol. 1965 Apr;25:SUPPL–SUPPL:144. doi: 10.1083/jcb.25.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. KANE R. E. The mitotic apparatus: isolation by controlled pH. J Cell Biol. 1962 Jan;12:47–55. doi: 10.1083/jcb.12.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kanatani H., Shirai H., Nakanishi K., Kurokawa T. Isolation and indentification on meiosis inducing substance in starfish Asterias amurensis. Nature. 1969 Jan 18;221(5177):273–274. doi: 10.1038/221273a0. [DOI] [PubMed] [Google Scholar]
  21. Kane R. E., Forer A. The mitotic apparatus. Structural changes after isolation. J Cell Biol. 1965 Jun;25(3 Suppl):31–39. doi: 10.1083/jcb.25.3.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. LaFountain J. R., Jr Birefringence and fine structure of spindles in spermatocytes of Nephrotoma suturalis at metaphase of first meiotic division. J Ultrastruct Res. 1974 Feb;46(2):268–278. doi: 10.1016/s0022-5320(74)80061-4. [DOI] [PubMed] [Google Scholar]
  23. Olmsted J. B., Borisy G. G. Microtubules. Annu Rev Biochem. 1973;42:507–540. doi: 10.1146/annurev.bi.42.070173.002451. [DOI] [PubMed] [Google Scholar]
  24. PAGE S. G., HUXLEY H. E. FILAMENT LENGTHS IN STRIATED MUSCLE. J Cell Biol. 1963 Nov;19:369–390. doi: 10.1083/jcb.19.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rebhun L. I., Rosenbaum J., Lefebvre P., Smith G. Reversible restoration of the birefringence of cold-treated, isolated mitotic apparatus of surf clam eggs with chick brain tubulin. Nature. 1974 May 10;249(453):113–115. doi: 10.1038/249113a0. [DOI] [PubMed] [Google Scholar]
  26. Rebhun L. I., Sander G. Ultrastructure and birefringence of the isolated mitotic apparatus of marine eggs. J Cell Biol. 1967 Sep;34(3):859–883. doi: 10.1083/jcb.34.3.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. TAYLOR E. W., CRAMER W. Birefringence of protein solutions and biological systems. I. Biophys J. 1963 Mar;3:127–141. doi: 10.1016/s0006-3495(63)86809-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Taylor D. L., Condeelis J. S., Moore P. L., Allen R. D. The contractile basis of amoeboid movement. I. The chemical control of motility in isolated cytoplasm. J Cell Biol. 1973 Nov;59(2 Pt 1):378–394. doi: 10.1083/jcb.59.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tilney L. G., Bryan J., Bush D. J., Fujiwara K., Mooseker M. S., Murphy D. B., Snyder D. H. Microtubules: evidence for 13 protofilaments. J Cell Biol. 1973 Nov;59(2 Pt 1):267–275. doi: 10.1083/jcb.59.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Weisenberg R. C. Microtubule formation in vitro in solutions containing low calcium concentrations. Science. 1972 Sep 22;177(4054):1104–1105. doi: 10.1126/science.177.4054.1104. [DOI] [PubMed] [Google Scholar]
  31. Weisenberg R. C., Rosenfeld A. C. In vitro polymerization of microtubules into asters and spindles in homogenates of surf clam eggs. J Cell Biol. 1975 Jan;64(1):146–158. doi: 10.1083/jcb.64.1.146. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES