Abstract
Cilia and ciliary membranes were isolated from axenically grown, wild- type Paramecium tetraurelia strain 51s and from the extreme pawn mutant strain, d495, derived from this parental strain. Over 60 protein bands having molecular weights of 15 to greater than 300 kdaltons were detected by Coomassie Blue staining of whole cilia proteins separated by one-dimensional SDS polyacrylamide gel electrophoresis. About 30 of these protein bands were visible in Coomassie Blue-stained membrane separations. About 60 bands were detected by silver staining of one- dimensional gels of membrane proteins. Differences between Coomassie Blue-stained separations of wild-type and pawn mutant strain d495 membrane proteins were seen in the quantity of a band present at 43 kdaltons. Radioiodination of cell surface proteins labeled approximately 15 protein bands in both wild-type and mutant cilia. The major axonemal proteins were unlabeled. Six membrane glycoproteins were identified by staining one-dimensional separations with iodinated concanavalin A and lentil lectin, two lectins that specifically bind both glucose and mannose residues. Two major neutral sugar species present in an acid hydrolysate of the cilia preparation were tentatively identified as glucose and mannose by gas chromatography of the alditol acetate derivatives.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adoutte A., Ramanathan R., Lewis R. M., Dute R. R., Ling K. Y., Kung C., Nelson D. L. Biochemical studies of the excitable membrane of Paramecium tetraurelia. III. Proteins of cilia and ciliary membranes. J Cell Biol. 1980 Mar;84(3):717–738. doi: 10.1083/jcb.84.3.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andrews D., Nelson D. L. Biochemical studies of the excitable membrane of Paramecium tetraurelia. II. Phospholipids of ciliary and other membranes. Biochim Biophys Acta. 1979 Jan 19;550(2):174–187. doi: 10.1016/0005-2736(79)90205-0. [DOI] [PubMed] [Google Scholar]
- Burridge K. Changes in cellular glycoproteins after transformation: identification of specific glycoproteins and antigens in sodium dodecyl sulfate gels. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4457–4461. doi: 10.1073/pnas.73.12.4457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dentler W. L. Microtubule-membrane interactions in cilia. I. Isolation and characterization of ciliary membranes from Tetrahymena pyriformis. J Cell Biol. 1980 Feb;84(2):364–380. doi: 10.1083/jcb.84.2.364. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doughty M. J. Control of ciliary activity in paramecium--IV. Ca2+ modification of Mg2+ dependent dynein ATPase activity. Comp Biochem Physiol B. 1979;64(3):255–266. doi: 10.1016/0305-0491(79)90140-8. [DOI] [PubMed] [Google Scholar]
- Dunlap K. Localization of calcium channels in Paramecium caudatum. J Physiol. 1977 Sep;271(1):119–133. doi: 10.1113/jphysiol.1977.sp011993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eckert R., Brehm P. Ionic mechanisms of excitation in Paramecium. Annu Rev Biophys Bioeng. 1979;8:353–383. doi: 10.1146/annurev.bb.08.060179.002033. [DOI] [PubMed] [Google Scholar]
- Eckert R., Machemer H. Regulation of ciliary beating frequency by the surface membrane. Soc Gen Physiol Ser. 1975;30:151–164. [PubMed] [Google Scholar]
- Estridge M. Polypeptides similar to the alpha and beta subunits of tubulin are exposed on the neuronal surface. Nature. 1977 Jul 7;268(5615):60–63. doi: 10.1038/268060a0. [DOI] [PubMed] [Google Scholar]
- Feller M., Behnke D., Gruenstein E. Relationship between lectin monosaccharide specificity and binding to the plasma membrane of human fibroblasts. Biochim Biophys Acta. 1979 Aug 22;586(2):315–329. doi: 10.1016/0304-4165(79)90102-8. [DOI] [PubMed] [Google Scholar]
- Good N. E., Izawa S. Hydrogen ion buffers. Methods Enzymol. 1972;24:53–68. doi: 10.1016/0076-6879(72)24054-x. [DOI] [PubMed] [Google Scholar]
- Gorovsky M. A., Carlson K., Rosenbaum J. L. Simple method for quantitive densitometry of polyacrylamide gels using fast green. Anal Biochem. 1970 Jun;35(2):359–370. doi: 10.1016/0003-2697(70)90196-x. [DOI] [PubMed] [Google Scholar]
- Hansma H. G., Kung C. Studies of the cell surface of Paramecium. Ciliary membrane proteins and immobilization antigens. Biochem J. 1975 Dec;152(3):523–528. doi: 10.1042/bj1520523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang B., Piperno G., Luck D. J. Paralyzed flagella mutants of Chlamydomonas reinhardtii. Defective for axonemal doublet microtubule arms. J Biol Chem. 1979 Apr 25;254(8):3091–3099. [PubMed] [Google Scholar]
- Kim J. H., Shome B., Liao T. H., Pierce J. G. Analysis of neutral sugars by gas-liquid chromatography of alditol acetates: application to thyrotropic hormone and other glycoproteins. Anal Biochem. 1967 Aug;20(2):258–274. doi: 10.1016/0003-2697(67)90031-0. [DOI] [PubMed] [Google Scholar]
- Kincaid H. L., Jr, Gibbons B. H., Gibbons I. R. The salt-extractable fraction of dynein from sea urchin sperm flagella: an analysis by gel electrophoresis and by adenosine triphosphatase activity. J Supramol Struct. 1973;1(6):461–470. doi: 10.1002/jss.400010603. [DOI] [PubMed] [Google Scholar]
- Kitamura A., Hiwatashi K. Mating-reactive membrane vesicles from cilia of Paramecium caudatum. J Cell Biol. 1976 Jun;69(3):736–740. doi: 10.1083/jcb.69.3.736. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kung C., Naito Y. Calcium-induced ciliary reversal in the extracted models of "Pawn", a behavioral mutant of Paramecium. Science. 1973 Jan 12;179(4069):195–196. doi: 10.1126/science.179.4069.195. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Machemer H., Eckert R. Electrophysiological control of reversed ciliary beating in Paramecium. J Gen Physiol. 1973 May;61(5):572–587. doi: 10.1085/jgp.61.5.572. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Machemer H., Ogura A. Ionic conductances of membranes in ciliated and deciliated Paramecium. J Physiol. 1979 Nov;296:49–60. doi: 10.1113/jphysiol.1979.sp012990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oertel D., Schein S. J., Kung C. Separation of membrane currents using a Paramecium mutant. Nature. 1977 Jul 14;268(5616):120–124. doi: 10.1038/268120a0. [DOI] [PubMed] [Google Scholar]
- Ogura A., Takahashi K. Artificial deciliation causes loss of calcium-dependent responses in Paramecium. Nature. 1976 Nov 11;264(5582):170–172. doi: 10.1038/264170a0. [DOI] [PubMed] [Google Scholar]
- PREER J. R., Jr Studies on the immobilization antigens of Paramecium. II. Isolation. J Immunol. 1959 Oct;83:378–384. [PubMed] [Google Scholar]
- PREER J. R., Jr Studies on the immobilization antigens of Paramecium. III. Properties. J Immunol. 1959 Oct;83:385–391. [PubMed] [Google Scholar]
- Phillips D. R., Morrison M. Exposed protein on the intact human erythrocyte. Biochemistry. 1971 May 11;10(10):1766–1771. doi: 10.1021/bi00786a006. [DOI] [PubMed] [Google Scholar]
- Piperno G., Huang B., Luck D. J. Two-dimensional analysis of flagellar proteins from wild-type and paralyzed mutants of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1600–1604. doi: 10.1073/pnas.74.4.1600. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rhoads D. E., Kaneshiro E. S. Characterizations of phospholipids from Paramecium tetraurelia cells and cilia. J Protozool. 1979 May;26(2):329–338. doi: 10.1111/j.1550-7408.1979.tb02790.x. [DOI] [PubMed] [Google Scholar]
- Satow Y., Kung C. Membrane currents of pawn mutants of the pwA group in Paramecium tetraurelia. J Exp Biol. 1980 Feb;84:57–71. doi: 10.1242/jeb.84.1.57. [DOI] [PubMed] [Google Scholar]
- Schein S. J. Nonbehavioral selection for pawns, mutants of Paramecium aurelia with decreased excitability. Genetics. 1976 Nov;84(3):453–468. doi: 10.1093/genetics/84.3.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephens R. E. Major membrane protein differences in cilia and flagella: evidence for a membrane-associated tubulin. Biochemistry. 1977 May 17;16(10):2047–2058. doi: 10.1021/bi00629a001. [DOI] [PubMed] [Google Scholar]
- Switzer R. C., 3rd, Merril C. R., Shifrin S. A highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gels. Anal Biochem. 1979 Sep 15;98(1):231–237. doi: 10.1016/0003-2697(79)90732-2. [DOI] [PubMed] [Google Scholar]
- Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
- Williams N. E., Subbaiah P. V., Thompson G. A., Jr Studies of membrane formation in Tetrahymena. The identification of membrane proteins and turnover rates in nongrowing cells. J Biol Chem. 1980 Jan 10;255(1):296–303. [PubMed] [Google Scholar]