Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1981 May 1;89(2):261–266. doi: 10.1083/jcb.89.2.261

Stabilization of vasopressin-induced membrane events by bifunctional imidoesters

PMCID: PMC2111682  PMID: 6265463

Abstract

Vasopressin increases the water permeability of the luminal membrane of the toad bladder epithelial cell. This change in permeability correlates with the occurrence in luminal membranes of intramembrane particle aggregates, which may be the sites for transmembrane water flow. Withdrawal of vasopressin is ordinarily associated with a rapid reduction of water flow to baseline values and a simultaneous disappearance of the particle aggregates. The bifunctional imidoesters dithiobispropionimidate (DTBP) and dimethylsuberimidate (DMS), which cross-link amino groups in membrane proteins and lipids, slow the return of water flow to baseline after vasopressin withdrawal. Cross- linking is maximal at pH 10, and is reduced as pH is lowered. Freeze- fracture studies show persistence of luminal membrane particle aggregates in cross-linked bladders and a reduction in their frequency as water flow diminishes. Fusion of aggregate-containing cytoplasmic tubular membrane structures with the luminal membrane is also maintained by the imidoesters. Reductive cleavage of the central S-S bond of DTBP by beta-mercaptoethanol reverses cross-linking, permitting resumption of the rapid disappearance of the vasopressin effect. Bladders that have undergone DTBP cross-linking and beta- mercaptoethanol reduction respond to a second stimulation by vasopressin. Thus, the imidoesters provide a physiologic and reversible means of stabilizing normally rapid membrane events.

Full Text

The Full Text of this article is available as a PDF (662.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BENTLEY P. J. The effects of neurohypophysial extracts on the water transfer across the wall of the isolated urinary bladder of the toad Bufo marinus. J Endocrinol. 1958 Sep;17(3):201–209. doi: 10.1677/joe.0.0170201. [DOI] [PubMed] [Google Scholar]
  2. Chevalier J., Bourguet J., Hugon J. S. Membrane associated particles: distribution in frog urinary bladder epithelium at rest and after oxytocin treatment. Cell Tissue Res. 1974;152(2):129–140. doi: 10.1007/BF00224690. [DOI] [PubMed] [Google Scholar]
  3. Dratwa M., Tisher C. C., Sommer J. R., Croker B. P., Jr Intramembranous particle aggregation in toad urinary bladder after vasopressin stimulation. Lab Invest. 1979 Jan;40(1):46–54. [PubMed] [Google Scholar]
  4. Eggena P. Glutaraldehyde-fixation method for determining the permeability to water of the toad urinary bladder. Endocrinology. 1972 Jul;91(1):240–246. doi: 10.1210/endo-91-1-240. [DOI] [PubMed] [Google Scholar]
  5. Eggena P. Osmotic regulation of toad bladder responsiveness to neurohypophyseal hormones. J Gen Physiol. 1972 Dec;60(6):665–678. doi: 10.1085/jgp.60.6.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ellis S. J., Kachadorian W. A., DiScala V. A. Effect of osmotic gradient on ADH-induced intramembranous particle aggregates in toad bladder. J Membr Biol. 1980;52(2):181–184. doi: 10.1007/BF01869124. [DOI] [PubMed] [Google Scholar]
  7. Hassell J., Hand A. R. Tissue fixation with diimidoesters as an alternative to aldehydes. I. Comparison of cross-linking and ultrastructure obtained with dimethylsuberimidate and glutaraldehyde. J Histochem Cytochem. 1974 Apr;22(4):223–229. doi: 10.1177/22.4.223. [DOI] [PubMed] [Google Scholar]
  8. Humbert F., Montesano R., Grosso A., de Sousa R. C., Orci L. Particle aggregates in plasma and intracellular membranes of toad bladder (granular cell). Experientia. 1977 Oct 15;33(10):1364–1367. doi: 10.1007/BF01920184. [DOI] [PubMed] [Google Scholar]
  9. Kachadorian W. A., Casey C., DiScala V. A. Time course of ADH-induced intramembranous particle aggregation in toad urinary bladder. Am J Physiol. 1978 Jun;234(6):F461–F465. doi: 10.1152/ajprenal.1978.234.6.F461. [DOI] [PubMed] [Google Scholar]
  10. Kachadorian W. A., Levine S. D., Wade J. B., Di Scala V. A., Hays R. M. Relationship of aggregated intramembranous particles to water permeability in vasopressin-treated toad urinary bladder. J Clin Invest. 1977 Mar;59(3):576–581. doi: 10.1172/JCI108673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kachadorian W. A., Muller J., Rudich S. W., DiScala V. A. Temperature dependence of ADH-induced water flow and intramembranous particle aggregates in toad bladder. Science. 1979 Aug 31;205(4409):910–913. doi: 10.1126/science.112678. [DOI] [PubMed] [Google Scholar]
  12. Kachadorian W. A., Wade J. B., DiScala V. A. Vasopressin: induced structural change in toad bladder luminal membrane. Science. 1975 Oct 3;190(4209):67–69. doi: 10.1126/science.809840. [DOI] [PubMed] [Google Scholar]
  13. Levine S. D., Kachadorian W. A., Verna N. C., Schlondorff D. Effect of hydrazine on transport on toad urinary bladder. Am J Physiol. 1980 Oct;239(4):F319–F327. doi: 10.1152/ajprenal.1980.239.4.F319. [DOI] [PubMed] [Google Scholar]
  14. Muller J., Kachadorian W. A., DiScala V. A. Evidence that ADH-stimulated intramembrane particle aggregates are transferred from cytoplasmic to luminal membranes in toad bladder epithelial cells. J Cell Biol. 1980 Apr;85(1):83–95. doi: 10.1083/jcb.85.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Peters K., Richards F. M. Chemical cross-linking: reagents and problems in studies of membrane structure. Annu Rev Biochem. 1977;46:523–551. doi: 10.1146/annurev.bi.46.070177.002515. [DOI] [PubMed] [Google Scholar]
  16. Satir B. H., Oberg S. G. Paramecium fusion rosettes: possible function as Ca2+ gates. Science. 1978 Feb 3;199(4328):536–538. doi: 10.1126/science.341312. [DOI] [PubMed] [Google Scholar]
  17. Wade J. B. Membrane structural specialization of the toad urinary bladder revealed by the freeze-fracture technique. III. Location, structure and vasopressin dependence of intramembrane particle arrays. J Membr Biol. 1978;40(Spec No):281–296. doi: 10.1007/BF02026011. [DOI] [PubMed] [Google Scholar]
  18. Wang K., Richards F. M. An approach to nearest neighbor analysis of membrane proteins. Application to the human erythrocyte membrane of a method employing cleavable cross-linkages. J Biol Chem. 1974 Dec 25;249(24):8005–8018. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES