Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1981 May 1;89(2):240–245. doi: 10.1083/jcb.89.2.240

Differential and synergistic actions of nerve growth factor and cyclic AMP in PC12 cells

PMCID: PMC2111685  PMID: 6265462

Abstract

When a clonal line of rat pheochromocytoma (PC12) was exposed to beta- nerve growth factor (beta NGF), N6, O2-dibutyryl adenosine 3':5' cyclic monophosphate (Bt2cAMP), or a combination of the two, 10, 26, or 70% of the cell clumps, respectively, displayed neurites after 1.d. Increases in the cellular RNA concentration were also found to be additive or greater when both agents were present. Neurites induced by Bt2cAMP alone were not maintained after replacement with beta NGF. The degree of potentiated neurite outgrowth was a function of the time of simultaneous exposure to both agents. The initiation of neurite outgrowth in the presence of Bt2cAMP was independent of RNA synthesis, in contrast to that induced by beta NGF alone. We conclude that beta NGF-induced initiation of morphological differentiation of these cells is not mediated by a cAMP-dependent mechanism. Consideration of Bt2cAMP effects upon other cell lines suggest that Bt2cAMP causes a rapid, but unstable, reorganization of the PC12 cytoskeleton, resulting in the initiation of neurite outgrowth from these cells. In contrast, beta NGF alone achieves a more stable cytoskeleton reorganization by an RNA synthesis-dependent mechanism.

Full Text

The Full Text of this article is available as a PDF (680.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burstein D. E., Greene L. A. Evidence for RNA synthesis-dependent and -independent pathways in stimulation of neurite outgrowth by nerve growth factor. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6059–6063. doi: 10.1073/pnas.75.12.6059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Garrels J. I., Schubert D. Modulation of protein synthesis by nerve growth factor. J Biol Chem. 1979 Aug 25;254(16):7978–7985. [PubMed] [Google Scholar]
  3. Green L. A. A quantitative bioassay for nerve growth factor (NGF) activity employing a clonal pheochromocytoma cell line. Brain Res. 1977 Sep 16;133(2):350–353. doi: 10.1016/0006-8993(77)90770-3. [DOI] [PubMed] [Google Scholar]
  4. Greene L. A. Nerve growth factor prevents the death and stimulates the neuronal differentiation of clonal PC12 pheochromocytoma cells in serum-free medium. J Cell Biol. 1978 Sep;78(3):747–755. doi: 10.1083/jcb.78.3.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Greene L. A., Tischler A. S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2424–2428. doi: 10.1073/pnas.73.7.2424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hatanaka H., Otten U., Thoenen H. Nerve growth factor-mediated selective induction of ornithine decarboxylase in rat pheochromocytoma; a cyclic AMP-independent process. FEBS Lett. 1978 Aug 15;92(2):313–316. doi: 10.1016/0014-5793(78)80777-7. [DOI] [PubMed] [Google Scholar]
  7. Hsie A. W., Puck T. T. Morphological transformation of Chinese hamster cells by dibutyryl adenosine cyclic 3':5'-monophosphate and testosterone. Proc Natl Acad Sci U S A. 1971 Feb;68(2):358–361. doi: 10.1073/pnas.68.2.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Landreth G. E., Shooter E. M. Nerve growth factor receptors on PC12 cells: ligand-induced conversion from low- to high-affinity states. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4751–4755. doi: 10.1073/pnas.77.8.4751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Landreth G., Cohen P., Shooter E. M. Ca2+ transmembrane fluxes and nerve growth factor action on a clonal cell line of rat phaeochromocytoma. Nature. 1980 Jan 10;283(5743):202–204. doi: 10.1038/283202a0. [DOI] [PubMed] [Google Scholar]
  11. Li A. P., O'Neill J. P., Kawashima K., Hsie A. W. Correlation between changes in intracellular level of cyclic AMP, activation of cyclic AMP-dependent protein kinase, and the morphology of Chinese hamster ovary cells in culture. Arch Biochem Biophys. 1977 Jul;182(1):181–187. doi: 10.1016/0003-9861(77)90297-1. [DOI] [PubMed] [Google Scholar]
  12. Mobley W. C., Server A. C., Ishii D. N., Riopelle R. J., Shooter E. M. Nerve growth factor (first of three parts). N Engl J Med. 1977 Nov 17;297(20):1096–1104. doi: 10.1056/NEJM197711172972005. [DOI] [PubMed] [Google Scholar]
  13. Porter K. R., Puck T. T., Hsie A. W., Kelley D. An electron microscopy study of the effects on dibutyryl cyclic AMP on Chinese hamster ovary cells. Cell. 1974 Jul;2(3):145–162. doi: 10.1016/0092-8674(74)90089-0. [DOI] [PubMed] [Google Scholar]
  14. Puck T. T. Cyclic AMP, the microtubule-microfilament system, and cancer. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4491–4495. doi: 10.1073/pnas.74.10.4491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Raff E. C. The control of microtubule assembly in vivo. Int Rev Cytol. 1979;59:1–96. doi: 10.1016/s0074-7696(08)61660-5. [DOI] [PubMed] [Google Scholar]
  16. Schubert D., Heinemann S., Kidokoro Y. Cholinergic metabolism and synapse formation by a rat nerve cell line. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2579–2583. doi: 10.1073/pnas.74.6.2579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schubert D., LaCorbiere M., Whitlock C., Stallcup W. Alterations in the surface properties of cells responsive to nerve growth factor. Nature. 1978 Jun 29;273(5665):718–723. doi: 10.1038/273718a0. [DOI] [PubMed] [Google Scholar]
  18. Schubert D., Whitlock C. Alteration of cellular adhesion by nerve growth factor. Proc Natl Acad Sci U S A. 1977 Sep;74(9):4055–4058. doi: 10.1073/pnas.74.9.4055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shigekawa B. L., Olsen R. W. Resolution of cyclic AMP stimulated protein kinase from polymerization-purified brain microtubules. Biochem Biophys Res Commun. 1975 Mar 17;63(2):455–462. doi: 10.1016/0006-291x(75)90709-3. [DOI] [PubMed] [Google Scholar]
  20. Sloboda R. D., Rudolph S. A., Rosenbaum J. L., Greengard P. Cyclic AMP-dependent endogenous phosphorylation of a microtubule-associated protein. Proc Natl Acad Sci U S A. 1975 Jan;72(1):177–181. doi: 10.1073/pnas.72.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Smith A. P., Varon S., Shooter E. M. Multiple forms of the nerve growth factor protein and its subunits. Biochemistry. 1968 Sep;7(9):3259–3268. doi: 10.1021/bi00849a032. [DOI] [PubMed] [Google Scholar]
  22. TSANEV R., MARKOV G. G. Substances interfering with spectrophotometric estimation of nucleic acids and their elimination by the two-wavelength method. Biochim Biophys Acta. 1960 Aug 26;42:442–452. doi: 10.1016/0006-3002(60)90822-2. [DOI] [PubMed] [Google Scholar]
  23. Willingham M. C. Cyclic AMP and cell behavior in cultured cells. Int Rev Cytol. 1976;44:319–363. doi: 10.1016/s0074-7696(08)61652-6. [DOI] [PubMed] [Google Scholar]
  24. Yankner B. A., Shooter E. M. Nerve growth factor in the nucleus: interaction with receptors on the nuclear membrane. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1269–1273. doi: 10.1073/pnas.76.3.1269. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES