Abstract
A clonal rat fetal liver cell line that expresses the functions of differentiated liver cells under controllable conditions has been established. Normal fetal liver cells were transformed by a temperature- sensitive A (tsA) mutant (tsA209) of simian virus 40. At the permissive temperature (33 degrees C), the tsA209-transformed liver cell line (RLA209-15) can be cultured indefinitely and cloned readily. The RLA209- 15 cells were temperature sensitive for maintenance of the transformed phenotype. These transformed liver cells selectively lost four characteristics of the transformed phenotype at the restrictive temperature (40 degrees C): generation time of the cells increased, the saturation density decreased, the efficiency of growth on nontransformed cell layers decreased, and the ability to clone in soft agar was lost. The transformation can be reversed simply by a shift in temperature. RLA209-15 fetal liver cells synthesized alpha-fetoprotein albumin, and transferrin. At 33 degrees C, the levels of these liver proteins were relatively low. At 40 degrees C the transformed phenotype was lost and the levels of alpha-fetoprotein, albumin, and transferrin were greatly increased. At the restrictive temperature, maximal induction of the synthesis of alpha-fetoprotein, albumin, and transferrin was achieved 3-4 d after the upward shift in temperature. The synthesis of alpha-fetoprotein then decreased; the synthesis of albumin and transferrin, however, was maintained. A second phase of albumin and transferrin synthesis was observed in all cultures after 6 d or more at 40 degrees C. Alpha-Fetoprotein, albumin, and transferrin secreted by RLA209-15 cells were immunologically indistinguishable from authentic alpha-fetoprotein, albumin, and transferrin, respectively. RLA209-15 cells, like primary cultures of hepatocytes and a simian virus 40 tsA255-transformed fetal liver cell line (RLA255-4) reported earlier from this laboratory, responded to glucagon with markedly elevated levels of cyclic AMP. Thus, it appears that glucagon receptors characteristic of hepatocytes are retained in the simian virus 40 tsA- transformed fetal liver cells.
Full Text
The Full Text of this article is available as a PDF (594.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abelev G. I. Alpha-fetoprotein in ontogenesis and its association with malignant tumors. Adv Cancer Res. 1971;14:295–358. doi: 10.1016/s0065-230x(08)60523-0. [DOI] [PubMed] [Google Scholar]
- Boettiger D., Roby K., Brumbaugh J., Biehl J., Holtzer H. Transformation of chicken embryo retinal melanoblasts by a temperature-sensitive mutant of Rous sarcoma virus. Cell. 1977 Aug;11(4):881–890. doi: 10.1016/0092-8674(77)90299-9. [DOI] [PubMed] [Google Scholar]
- Chou J. Y. Effects of adenosine cyclic nucleotides on the synthesis of human chorionic gonadotropin in transformed human placental cells. Cancer Res. 1980 Nov;40(11):4025–4030. [PubMed] [Google Scholar]
- Chou J. Y. Establishment of clonal human placental cells synthesizing human choriogonadotropin. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1854–1858. doi: 10.1073/pnas.75.4.1854. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chou J. Y. Human placental cells transformed by tsA mutants of simian virus 40: a model system for the study of placental functions. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1409–1413. doi: 10.1073/pnas.75.3.1409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chou J. Y., Martin R. G. Complementation analysis of simian virus 40 mutants. J Virol. 1974 May;13(5):1101–1109. doi: 10.1128/jvi.13.5.1101-1109.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feldhoff R. C., Taylor J. M., Jefferson L. S. Synthesis and secretion of rat albumin in vivo, in perfused liver, and in isolated hepatocytes. Effects of hypophysectomy and growth hormone treatment. J Biol Chem. 1977 Jun 10;252(11):3611–3616. [PubMed] [Google Scholar]
- Gitlin D., Boesman M. Sites of serum alpha-fetoprotein synthesis in the human and in the rat. J Clin Invest. 1967 Jun;46(6):1010–1016. doi: 10.1172/JCI105590. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greene F. C., Feeney R. E. Physical evidence for transferrins as single polypeptide chains. Biochemistry. 1968 Apr;7(4):1366–1371. doi: 10.1021/bi00844a018. [DOI] [PubMed] [Google Scholar]
- Jeejeebhoy K. N., Ho J., Greenberg G. R., Phillips M. J., Bruce-Robertson A., Sodtke U. Albumin, fibrinogen and transferrin synthesis in isolated rat hepatocyte suspensions. A model for the study of plasma protein synthesis. Biochem J. 1975 Jan;146(1):141–155. doi: 10.1042/bj1460141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Martin R. G., Chou J. Y. Simian virus 40 functions required for the establishment and maintenance of malignant transformation. J Virol. 1975 Mar;15(3):599–612. doi: 10.1128/jvi.15.3.599-612.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morgan E. H. Factors affecting the synthesis of transferrin by rat tissue slices. J Biol Chem. 1969 Aug 10;244(15):4193–4199. [PubMed] [Google Scholar]
- Pacifici M., Boettiger D., Roby K., Holtzer H. Transformation of chondroblasts by Rous sarcoma virus and synthesis of the sulfated proteoglycan matrix. Cell. 1977 Aug;11(4):891–899. doi: 10.1016/0092-8674(77)90300-2. [DOI] [PubMed] [Google Scholar]
- Peters T., Jr, Peters J. C. The biosynthesis of rat serum albumin. VI. Intracellular transport of albumin and rates of albumin and liver protein synthesis in vivo under various physiological conditions. J Biol Chem. 1972 Jun 25;247(12):3858–3863. [PubMed] [Google Scholar]
- Pilkis S. J., Claus T. H., Johnson R. A., Park C. R. Hormonal control of cyclic 3':5'-AMP levels and gluconeogenesis in isolated hepatocytes from fed rats. J Biol Chem. 1975 Aug 25;250(16):6328–6336. [PubMed] [Google Scholar]
- Plas C., Nunez J. Glycogenolytic response to glucagon of cultured fetal hepatocytes. Refractoriness following prior exposure to glucagon. J Biol Chem. 1975 Jul 25;250(14):5304–5311. [PubMed] [Google Scholar]
- Rothschild M. A., Oratz M., Schreiber S. S. Albumin synthesis. 1. N Engl J Med. 1972 Apr 6;286(14):748–757. doi: 10.1056/NEJM197204062861404. [DOI] [PubMed] [Google Scholar]
- Schlegel-Haueter S. E., Schlegel W., Chou J. Y. Establishment of a fetal rat liver cell line that retains differentiated liver functions. Proc Natl Acad Sci U S A. 1980 May;77(5):2731–2734. doi: 10.1073/pnas.77.5.2731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sell S., Becker F. F. alpha-Fetoprotein. J Natl Cancer Inst. 1978 Jan;60(1):19–26. doi: 10.1093/jnci/60.1.19. [DOI] [PubMed] [Google Scholar]
- Sell S., Skelly H., Leffert H. L., Muller-Eberhard U., Kida S. Relationship of the biosynthesis of alpha-fetoprotein, albumin, hemopexin, and haptoglobin to the growth state of fetal rat hepatocyte cultures. Ann N Y Acad Sci. 1975 Aug 22;259:45–58. doi: 10.1111/j.1749-6632.1975.tb25401.x. [DOI] [PubMed] [Google Scholar]
- Sell S., Skelly H. Tissue sites of alpha fetoprotein synthesis by the rat during pregnancy and hepatoma growth. J Natl Cancer Inst. 1976 Mar;56(3):645–648. doi: 10.1093/jnci/56.3.645. [DOI] [PubMed] [Google Scholar]
- TJIO J. H., WHANG J. Chromosome preparations of bone marrow cells without prior in vitro culture or in vivo colchicine administration. Stain Technol. 1962 Jan;37:17–20. doi: 10.3109/10520296209114563. [DOI] [PubMed] [Google Scholar]
- Wincek T. J., Hupka A. L., Sweat F. W. Stimulation of adenylate cyclase from isolated hepatocytes and Kupffer cells. J Biol Chem. 1975 Nov 25;250(22):8863–8873. [PubMed] [Google Scholar]