Abstract
Melanophores of the angelfish, Pterophyllum scalare, were studied in an attempt to demonstrate the existence of actin in these cells although microfilaments had previously not been found. By use of a variety of procedures, including immunofluorescence microscopy of intact and detergent-extracted cells, transmission electron microscopy, high voltage electron microscopy of whole-mount preparations, and labeling with heavy meromyosin-subfragment 1, the presence of a loose cortical mesh of actin filaments is demonstrated. In addition, a more parallel array of filaments is detected in microspike- and microvillus-like surface projections. There seem to be no changes in the arrangement of these filaments as a function of the state of pigment distribution. No actin filaments could be found in association with pigment granules or microtubules in more central cell portions. For reasons presently unknown, the preservation of the cortical filament network in lysed cell preparations depends strongly on the presence of an intact microtubular system. The involvement of this subplasmalemmal actin filament network in pigment granule transport remains unclear.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aubin J. E., Weber K., Osborn M. Analysis of actin and microfilament-associated proteins in the mitotic spindle and cleavage furrow of PtK2 cells by immunofluorescence microscopy. A critical note. Exp Cell Res. 1979 Nov;124(1):93–109. doi: 10.1016/0014-4827(79)90260-x. [DOI] [PubMed] [Google Scholar]
- Byers H. R., Porter K. R. Transformations in the structure of the cytoplasmic ground substance in erythrophores during pigment aggregation and dispersion. I. A study using whole-cell preparations in stereo high voltage electron microscopy. J Cell Biol. 1977 Nov;75(2 Pt 1):541–558. doi: 10.1083/jcb.75.2.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dambach M., Weber W. Inhibition of pigment movement by cytochalasin B in the chromatophores of the sea urchin Centrostephanus longispinus. Comp Biochem Physiol C. 1975 Jan 1;50(1):49–52. [PubMed] [Google Scholar]
- Green L. MECHANISM OF MOVEMENTS OF GRANULES IN MELANOCYTES OF Fundulus heteroclitus. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1179–1186. doi: 10.1073/pnas.59.4.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lambert D. T., Crowe J. H. Colchicine, cytochalasin B, cyclic AMP, and pigment granule translocation in melanophores of Uca pugilator and Hemigrapsus oregonensis (Crustacea: Decapoda). Comp Biochem Physiol C. 1976;54(2):115–121. doi: 10.1016/0306-4492(76)90074-5. [DOI] [PubMed] [Google Scholar]
- Luby K. J., Porter K. R. The control of pigment migration in isolated erythrophores of Holocentrus ascensionis (Osbeck). I. Energy requirements. Cell. 1980 Aug;21(1):13–23. doi: 10.1016/0092-8674(80)90110-5. [DOI] [PubMed] [Google Scholar]
- MOLLENHAUER H. H. PLASTIC EMBEDDING MIXTURES FOR USE IN ELECTRON MICROSCOPY. Stain Technol. 1964 Mar;39:111–114. [PubMed] [Google Scholar]
- Malawista S. E. Cytochalasin B reversibly inhibits melanin granule movement in melanocytes. Nature. 1971 Dec 10;234(5328):354–355. doi: 10.1038/234354a0. [DOI] [PubMed] [Google Scholar]
- Margossian S. S., Lowey S. Substructure of the myosin molecule. IV. Interactions of myosin and its subfragments with adenosine triphosphate and F-actin. J Mol Biol. 1973 Mar 5;74(3):313–330. doi: 10.1016/0022-2836(73)90376-8. [DOI] [PubMed] [Google Scholar]
- McGuire J., Moellmann G. Cytochalasin B: effects on microfilaments and movement of melanin granules within melanocytes. Science. 1972 Feb 11;175(4022):642–644. doi: 10.1126/science.175.4022.642. [DOI] [PubMed] [Google Scholar]
- Murphy D. B., Tilney L. G. The role of microtubules in the movement of pigment granules in teleost melanophores. J Cell Biol. 1974 Jun;61(3):757–779. doi: 10.1083/jcb.61.3.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Novales R. R., Novales B. J. Effect of cytochalasin B on the response of the chromatophores of isolated frog skin to MSH, theophylline, and dibutyryl cyclic AMP. Gen Comp Endocrinol. 1972 Oct;19(2):363–366. doi: 10.1016/0016-6480(72)90119-0. [DOI] [PubMed] [Google Scholar]
- Obika M., Turner W. A., Jr, Negishi S., Menter D. G., Tchen T. T., Taylor J. D. The effects of lumicolchicine, colchicine and vinblastine on pigment migration in fish chromatophores. J Exp Zool. 1978 Jul;205(1):95–110. doi: 10.1002/jez.1402050112. [DOI] [PubMed] [Google Scholar]
- Osborn M., Born T., Koitsch H. J., Weber K. Stereo immunofluorescence microscopy: I. Three-dimensional arrangement of microfilaments, microtubules and tonofilaments. Cell. 1978 Jul;14(3):477–488. doi: 10.1016/0092-8674(78)90234-9. [DOI] [PubMed] [Google Scholar]
- Osborn M., Weber K. The display of microtubules in transformed cells. Cell. 1977 Nov;12(3):561–571. doi: 10.1016/0092-8674(77)90257-4. [DOI] [PubMed] [Google Scholar]
- Porter K. R. Microtubules in intracellular locomotion. Ciba Found Symp. 1973;14:149–169. doi: 10.1002/9780470719978.ch7. [DOI] [PubMed] [Google Scholar]
- Schliwa M., Bereiter-Hahn J. Pigment movements in fish melanophores: morphological and physiological studies. V. Evidence for a microtubule-independent contractile system. Cell Tissue Res. 1975;158(1):61–73. doi: 10.1007/BF00219951. [DOI] [PubMed] [Google Scholar]
- Schliwa M., Euteneuer U. A microtuble-independent component may be involved in granule transport in pigment cells. Nature. 1978 Jun 15;273(5663):556–558. doi: 10.1038/273556a0. [DOI] [PubMed] [Google Scholar]
- Schliwa M. Microtubular apparates of melanophores. Three-dimensional organization. J Cell Biol. 1978 Mar;76(3):605–614. doi: 10.1083/jcb.76.3.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schliwa M., Osborn M., Weber K. Microtubule system of isolated fish melanophores as revealed by immunofluorescence microscopy. J Cell Biol. 1978 Jan;76(1):229–236. doi: 10.1083/jcb.76.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schliwa M. Stereo high voltage electron microscopy of melanophores. Matrix transformations during pigment movements and the effects of cold and colchicine. Exp Cell Res. 1979 Feb;118(2):323–340. doi: 10.1016/0014-4827(79)90157-5. [DOI] [PubMed] [Google Scholar]
- Schloss J. A., Milsted A., Goldman R. D. Myosin subfragment binding for the localization of actin-like microfilaments in cultured cells. A light and electron microscope study. J Cell Biol. 1977 Sep;74(3):794–815. doi: 10.1083/jcb.74.3.794. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weber K., Rathke P. C., Osborn M. Cytoplasmic microtubular images in glutaraldehyde-fixed tissue culture cells by electron microscopy and by immunofluorescence microscopy. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1820–1824. doi: 10.1073/pnas.75.4.1820. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weber K., Wehland J., Herzog W. Griseofulvin interacts with microtubules both in vivo and in vitro. J Mol Biol. 1976 Apr 25;102(4):817–829. doi: 10.1016/0022-2836(76)90293-x. [DOI] [PubMed] [Google Scholar]
- Wikswo M. A., Novales R. R. Effect of colchicine on microtubules in the melanophores of Fundulus heteroclitus. J Ultrastruct Res. 1972 Nov;41(3):189–201. doi: 10.1016/s0022-5320(72)90063-9. [DOI] [PubMed] [Google Scholar]
