Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1981 Jan 1;88(1):57–66. doi: 10.1083/jcb.88.1.57

Differentiation of a teratocarcinoma line: preferential development of cholinergic neurons

PMCID: PMC2111709  PMID: 6259178

Abstract

A line of embryonal carcinoma cells, PCC7-S, established in vitro from a spontaneous testicular teratocarcinoma, has been studied. Upon removing the cells from a low density monolayer culture system and permitting the cells to form aggregates in suspension, we observed a change of several physical and biochemical parameters: (a) reduction in average cell volume, (b) blockage and accumulation of cells in G1, (c) rise in secreted protease activity, (d) rise in acetylcholinesterase and choline acetyltransferase activities, and (e) disappearance of embryonic antigen F9. Although PCC7 aggregates did not undergo substantial morphological changes while suspended, when aggregates 4 or more days old were allowed to attach to plastic tissue culture dishes, substantial neurite outgrowth occurred over the next 1-3 d. This process was markedly enhanced by the addition to the growth medium of carboxymethylcellulose and inhibitors of DNA synthesis. Transmission electron microscopy disclosed a neurite ultrastructure consistent with that of neuronal processes. A veratridine-stimulated, tetrodotoxin- blocked sodium influx of 100 nmol/min per mg protein was also observed in these differentiated surface cultures. This cell line is discussed in terms of its utility for the study of early events leading to a commitment to cellular differentiation, as well as for the investigation of terminal differentiation to cholinergic neurons.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Artzt K., Dubois P., Bennett D., Condamine H., Babinet C., Jacob F. Surface antigens common to mouse cleavage embryos and primitive teratocarcinoma cells in culture. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2988–2992. doi: 10.1073/pnas.70.10.2988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beers W. H., Strickland S., Reich E. Ovarian plasminogen activator: relationship to ovulation and hormonal regulation. Cell. 1975 Nov;6(3):387–394. doi: 10.1016/0092-8674(75)90188-9. [DOI] [PubMed] [Google Scholar]
  3. Berstine E. G., Hooper M. L., Grandchamp S., Ephrussi B. Alkaline phosphatase activity in mouse teratoma. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3899–3903. doi: 10.1073/pnas.70.12.3899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bray D. Surface movements during the growth of single explanted neurons. Proc Natl Acad Sci U S A. 1970 Apr;65(4):905–910. doi: 10.1073/pnas.65.4.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brinkley B. R., Murphy P., Richardson L. C. Procedure for embedding in situ selected cells cultured in vitro. J Cell Biol. 1967 Oct;35(1):279–283. doi: 10.1083/jcb.35.1.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brinster R. L. The effect of cells transferred into the mouse blastocyst on subsequent development. J Exp Med. 1974 Oct 1;140(4):1049–1056. doi: 10.1084/jem.140.4.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Catterall W. A., Nirenberg M. Sodium uptake associated with activation of action potential ionophores of cultured neuroblastoma and muscle cells. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3759–3763. doi: 10.1073/pnas.70.12.3759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Damjanov I., Solter D., Serman D. Teratocarcinoma with the capacity for differentiation restricted to neuro-ectodermal tissue. Virchows Arch B Cell Pathol. 1973 Jul 22;13(3):179–195. doi: 10.1007/BF02889307. [DOI] [PubMed] [Google Scholar]
  9. ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
  10. Fellous M., Günther E., Kemler R., Wiels J., Berger R., Guenet J. L., Jakob H., Jacob F. Association of the H-Y male antigen with beta2-microglobulin on human lymphoid and differentiated mouse teratocarcinoma cell lines. J Exp Med. 1978 Jul 1;148(1):58–70. doi: 10.1084/jem.148.1.58. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fonnum F. A rapid radiochemical method for the determination of choline acetyltransferase. J Neurochem. 1975 Feb;24(2):407–409. doi: 10.1111/j.1471-4159.1975.tb11895.x. [DOI] [PubMed] [Google Scholar]
  12. Jacob F. Mouse teratocarcinoma and embryonic antigens. Immunol Rev. 1977 Jan;33:3–32. doi: 10.1111/j.1600-065x.1977.tb00360.x. [DOI] [PubMed] [Google Scholar]
  13. Jacob F. The Leeuwenhoek Lecture, 1977. Mouse teratocarcinoma and mouse embryo. Proc R Soc Lond B Biol Sci. 1978 May 16;201(1144):249–270. doi: 10.1098/rspb.1978.0044. [DOI] [PubMed] [Google Scholar]
  14. KARNOVSKY M. J., ROOTS L. A "DIRECT-COLORING" THIOCHOLINE METHOD FOR CHOLINESTERASES. J Histochem Cytochem. 1964 Mar;12:219–221. doi: 10.1177/12.3.219. [DOI] [PubMed] [Google Scholar]
  15. KLEINSMITH L. J., PIERCE G. B., Jr MULTIPOTENTIALITY OF SINGLE EMBRYONAL CARCINOMA CELLS. Cancer Res. 1964 Oct;24:1544–1551. [PubMed] [Google Scholar]
  16. Kahan B. W., Ephrussi B. Developmental potentialities of clonal in vitro cultures of mouse testicular teratoma. J Natl Cancer Inst. 1970 May;44(5):1015–1036. [PubMed] [Google Scholar]
  17. Kemler R., Babinet C., Condamine H., Gachelin G., Guenet J. L., Jacob F. Embryonal carcinoma antigen and the T/t locus of the mouse. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4080–4084. doi: 10.1073/pnas.73.11.4080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Koike T., Pfeiffer S. E. Carboxymethyl cellulose stimulation of neurite outgrowth of neuroblastoma cells in culture. Dev Neurosci. 1979;2(4):177–182. doi: 10.1159/000112452. [DOI] [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Levine A. J., Torosian M., Sarokhan A. J., Teresky A. K. Biochemical criteria for the in vitro differentiation of embryoid bodies produced by a transplantable teratoma of mice. The production of acetylcholine esterase and creatine phosphokinase by teratoma cells. J Cell Physiol. 1974 Oct;84(2):311–317. doi: 10.1002/jcp.1040840217. [DOI] [PubMed] [Google Scholar]
  21. Loritz F., Bernstein A., Miller R. G. Early and late volume changes during erythroid differentiation of cultured Friend leukemic cells. J Cell Physiol. 1977 Mar;90(3):423–437. doi: 10.1002/jcp.1040900306. [DOI] [PubMed] [Google Scholar]
  22. Mains R. E., Patterson P. H. Primary cultures of dissociated sympathetic neurons. I. Establishment of long-term growth in culture and studies of differentiated properties. J Cell Biol. 1973 Nov;59(2 Pt 1):329–345. doi: 10.1083/jcb.59.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Martin G. R., Evans M. J. Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1441–1445. doi: 10.1073/pnas.72.4.1441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Martin G. R., Evans M. J. The morphology and growth of a pluripotent teratocarcinoma cell line and its derivatives in tissue culture. Cell. 1974 Jul;2(3):163–172. doi: 10.1016/0092-8674(74)90090-7. [DOI] [PubMed] [Google Scholar]
  25. Mintz B., Illmensee K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3585–3589. doi: 10.1073/pnas.72.9.3585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nicolas J. F., Dubois P., Jakob H., Gaillard J., Jacob F. Tératocarcinome de la souris: différenciation en culture d'une lignée de cellules primitives a potentialités multiples. Ann Microbiol (Paris) 1975 Jan;126(1):3–22. [PubMed] [Google Scholar]
  27. Orenberg E. K., Vandenberg S. R., Barchas J. D., Herman M. M. Neurochemical studies in a mouse teratoma with neuroepithelial differentiation. Presence of cyclic AMP, serotonin and enzymes of the serotonergic, adrenergic and cholinergic systems. Brain Res. 1976 Jan 16;101(2):273–281. doi: 10.1016/0006-8993(76)90268-7. [DOI] [PubMed] [Google Scholar]
  28. PIERCE G. B., Jr, BEALS T. F. THE ULTRASTRUCTURE OF PRIMORDIAL GERMINAL CELLS OF THE FETAL TESTES AND OF EMBRYONAL CARCINOMA CELLS OF MICE. Cancer Res. 1964 Oct;24:1553–1567. [PubMed] [Google Scholar]
  29. Papaioannou V. E., McBurney M. W., Gardner R. L., Evans M. J. Fate of teratocarcinoma cells injected into early mouse embryos. Nature. 1975 Nov 6;258(5530):70–73. doi: 10.1038/258070a0. [DOI] [PubMed] [Google Scholar]
  30. Rosenthal M. D., Wishnow R. M., Sato G. H. In vitro growth and differetiation of clonal populations of multipotential mouse clls derived from a transplantable testicular teratocarcinoma. J Natl Cancer Inst. 1970 May;44(5):1001–1014. [PubMed] [Google Scholar]
  31. Rossier J., Bauman A., Benda P. Improved purification of rat brain choline acetyltransferase by using an immunoabsorbent. FEBS Lett. 1973 Jun 1;32(2):231–234. doi: 10.1016/0014-5793(73)80839-7. [DOI] [PubMed] [Google Scholar]
  32. STEVENS L. C. Studies on transplantable testicular teratomas of strain 129 mice. J Natl Cancer Inst. 1958 Jun;20(6):1257–1275. doi: 10.1093/jnci/20.6.1257. [DOI] [PubMed] [Google Scholar]
  33. Schubert D., LaCorbiere M., Whitlock C., Stallcup W. Alterations in the surface properties of cells responsive to nerve growth factor. Nature. 1978 Jun 29;273(5665):718–723. doi: 10.1038/273718a0. [DOI] [PubMed] [Google Scholar]
  34. Shapiro D. L. Morphological and biochemical alterations in foetal rat brain cells cultured in the presence of monobutyryl cyclic AMP. Nature. 1973 Jan 19;241(5386):203–204. doi: 10.1038/241203a0. [DOI] [PubMed] [Google Scholar]
  35. Shapiro D. L., Schrier B. K. Cell cultures of fetal rat brain: growth and marker enzyme development. Exp Cell Res. 1973 Mar 15;77(1):239–247. doi: 10.1016/0014-4827(73)90573-9. [DOI] [PubMed] [Google Scholar]
  36. Sherman M. I., Strickland S., Reich E. Differentiation of early mouse embryonic and teratocarcinoma cells in vitro: plasminogen activator production. Cancer Res. 1976 Nov;36(11 Pt 2):4208–4216. [PubMed] [Google Scholar]
  37. Stevens L. C. The biology of teratomas. Adv Morphog. 1967;6:1–31. doi: 10.1016/b978-1-4831-9953-5.50005-6. [DOI] [PubMed] [Google Scholar]
  38. Teresky A. K., Marsden M., Kuff E. L., Levine A. J. Morphological criteria for the in vitro differentiation of embryoid bodies produced by a transplantable teratoma of mice. J Cell Physiol. 1974 Oct;84(2):319–332. doi: 10.1002/jcp.1040840218. [DOI] [PubMed] [Google Scholar]
  39. VandenBerg S. R., Herman M. M., Ludwin S. K., Bignami A. An experimental mouse testicular teratoma as a model for neuroepithelial neoplasia and differentiation. I. Light microscopic and tissue and organ culture observations. Am J Pathol. 1975 Apr;79(1):147–168. [PMC free article] [PubMed] [Google Scholar]
  40. Yavin E., Yavin Z. Attachment and culture of dissociated cells from rat embryo cerebral hemispheres on polylysine-coated surface. J Cell Biol. 1974 Aug;62(2):540–546. doi: 10.1083/jcb.62.2.540. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES