Abstract
Immunoglobulin heavy (Ig H) and light (Ig L) chain mRNA molecules have been released from the endoplasmic reticulum (ER) membranes as free (F) mRNP particles when MOPC 21 (P3K) mouse myeloma cells are exposed to a hypertonic initiation block (HIB). The subsequent fate of these mRNA sequences has been examined when the cells are returned to normal growth medium. Upon return to isotonicity, all previously translated mRNA molecules reassociate with ribosomes and form functional polysomes. Ig H mRNA is found incorporated first into F polysomes and then into membrane-bound (MB) polysomes. Kinetic studies indicate that the time of passage of Ig H mRNA in F polysomes is approximately 30 s, during which a nascent polypeptide chain of approximately 80 amino acids would have been completed. When the rate of polypeptide elongation is depressed with emetine during the recovery from HIB, both Ig H and L mRNA molecules accumulate in small F polysomes. These results indicate that the formation of Ig-synthesizing polysomes proceeds in the sequence: mRNA leads to F polysomes leads to MB polysomes. With the additional observation that during HIB recovery puromycin completely prevents the reassociation of Ig mRNA with the ER, these findings support a model of MB polysome formation in which the specificity of membrane attachment is determined by the nature of the N- terminal amino acid sequence of the nascent polypeptide chain.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALLEN D. W., ZAMECNIK P. C. The effect of puromycin on rabbit reticulocyte ribosomes. Biochim Biophys Acta. 1962 Jun 11;55:865–874. doi: 10.1016/0006-3002(62)90899-5. [DOI] [PubMed] [Google Scholar]
- Adesnik M., Lande M., Martin T., Sabatini D. D. Retention of mRNA on the endoplasmic reticulum membranes after in vivo disassembly of polysomes by an inhibitor of initiation. J Cell Biol. 1976 Oct;71(1):307–313. doi: 10.1083/jcb.71.1.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blobel G., Dobberstein B. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol. 1975 Dec;67(3):835–851. doi: 10.1083/jcb.67.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blobel G., Sabatini D. D. Controlled proteolysis of nascent polypeptides in rat liver cell fractions. I. Location of the polypeptides within ribosomes. J Cell Biol. 1970 Apr;45(1):130–145. doi: 10.1083/jcb.45.1.130. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Civelli O., Vincent A., Buri J. F., Scherrer K. Evidence for a translational inhibitor linked to globin mRNA in untranslated free cytoplasmic messenger ribonucleoprotein complexes. FEBS Lett. 1976 Dec 15;72(1):71–76. doi: 10.1016/0014-5793(76)80815-0. [DOI] [PubMed] [Google Scholar]
- Cleveland D. W., Kirschner M. W., Cowan N. J. Isolation of separate mRNAs for alpha- and beta-tubulin and characterization of the corresponding in vitro translation products. Cell. 1978 Nov;15(3):1021–1031. doi: 10.1016/0092-8674(78)90286-6. [DOI] [PubMed] [Google Scholar]
- Fan H., Penman S. Regulation of protein synthesis in mammalian cells. II. Inhibition of protein synthesis at the level of initiation during mitosis. J Mol Biol. 1970 Jun 28;50(3):655–670. doi: 10.1016/0022-2836(70)90091-4. [DOI] [PubMed] [Google Scholar]
- Grollman A. P. Inhibitors of protein biosynthesis. V. Effects of emetine on protein and nucleic acid biosynthesis in HeLa cells. J Biol Chem. 1968 Aug 10;243(15):4089–4094. [PubMed] [Google Scholar]
- Grubman M. J., Weinstein J. A., Shafritz D. A. Studies on the mechanism for entry of vesicular stomatitis virus glycoprotein G mRNA into membrane-bound polyribosome complexes. J Cell Biol. 1977 Jul;74(1):43–57. doi: 10.1083/jcb.74.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunt T. The control of globin synthesis in rabbit reticulocytes. Ann N Y Acad Sci. 1974 Nov 29;241(0):223–231. doi: 10.1111/j.1749-6632.1974.tb21880.x. [DOI] [PubMed] [Google Scholar]
- Lande M. A., Adesnik M., Sumida M., Tashiro Y., Sabatini D. D. Direct association of messenger RNA with microsomal membranes in human diploid fibroblasts. J Cell Biol. 1975 Jun;65(3):513–528. doi: 10.1083/jcb.65.3.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lenk R., Ransom L., Kaufmann Y., Penman S. A cytoskeletal structure with associated polyribosomes obtained from HeLa cells. Cell. 1977 Jan;10(1):67–78. doi: 10.1016/0092-8674(77)90141-6. [DOI] [PubMed] [Google Scholar]
- Lodish H. F., Froshauer S. Binding of viral glycoprotein mRNA to endoplasmic reticulum membranes is disrupted by puromycin. J Cell Biol. 1977 Aug;74(2):358–364. doi: 10.1083/jcb.74.2.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lodish H. F., Jacobsen M. Regulation of hemoglobin synthesis. Equal rates of translation and termination of - and -globin chains. J Biol Chem. 1972 Jun 10;247(11):3622–3629. [PubMed] [Google Scholar]
- Malkin L. I., Rich A. Partial resistance of nascent polypeptide chains to proteolytic digestion due to ribosomal shielding. J Mol Biol. 1967 Jun 14;26(2):329–346. doi: 10.1016/0022-2836(67)90301-4. [DOI] [PubMed] [Google Scholar]
- Mechler B., Mach B. Preparation and properties of ribosomal subunits from mouse plasmocytoma tumors. Eur J Biochem. 1971 Aug 25;21(4):552–564. doi: 10.1111/j.1432-1033.1971.tb01501.x. [DOI] [PubMed] [Google Scholar]
- Mechler B. Membrane-bound ribosomes of myeloma cells. V. Subcellular distribution of immunoglobulin mRNA molecules. J Cell Biol. 1981 Jan;88(1):37–41. doi: 10.1083/jcb.88.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mechler B., Rabbitts T. H. Membrane-bound ribosomes of myeloma cells. IV. mRNA complexity of free and membrane-bound polysomes. J Cell Biol. 1981 Jan;88(1):29–36. doi: 10.1083/jcb.88.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mechler B., Vassalli P. Membrane-bound ribosomes of myeloma cells. I. Preparation of free and membrane-bound ribosomal fractions. Assessment of the methods and properties of the ribosomes. J Cell Biol. 1975 Oct;67(1):1–15. doi: 10.1083/jcb.67.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mechler B., Vassalli P. Membrane-bound ribosomes of myeloma cells. II. Kinetic studies on the entry of newly made ribosomal subunits into the free and the membrane-bound ribosomal particles. J Cell Biol. 1975 Oct;67(1):16–24. doi: 10.1083/jcb.67.1.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mechler B., Vassalli P. Membrane-bound ribosomes of myeloma cells. III. The role of the messenger RNA and the nascent polypeptide chain in the binding of ribosomes to membranes. J Cell Biol. 1975 Oct;67(1):25–37. doi: 10.1083/jcb.67.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milcarek C., Penman S. Membrane-bound polyribosomes in HeLa cells: association of polyadenylic acid with membranes. J Mol Biol. 1974 Oct 25;89(2):327–338. doi: 10.1016/0022-2836(74)90522-1. [DOI] [PubMed] [Google Scholar]
- Milstein C., Adetugbo K., Cowan N. J., Köhler G., Secher D. S., Wilde C. D. Somatic cell genetics of antibody-secreting cells: studies of clonal diversification and analysis by cell fusion. Cold Spring Harb Symp Quant Biol. 1977;41(Pt 2):793–803. doi: 10.1101/sqb.1977.041.01.090. [DOI] [PubMed] [Google Scholar]
- Milstein C., Brownlee G. G., Harrison T. M., Mathews M. B. A possible precursor of immunoglobulin light chains. Nat New Biol. 1972 Sep 27;239(91):117–120. doi: 10.1038/newbio239117a0. [DOI] [PubMed] [Google Scholar]
- Morrison T. G. Site of synthesis of membrane and nonmembrane proteins of vesicular stomatitis virus. J Biol Chem. 1975 Sep 10;250(17):6955–6962. [PubMed] [Google Scholar]
- NATHANS D. PUROMYCIN INHIBITION OF PROTEIN SYNTHESIS: INCORPORATION OF PUROMYCIN INTO PEPTIDE CHAINS. Proc Natl Acad Sci U S A. 1964 Apr;51:585–592. doi: 10.1073/pnas.51.4.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palade G. Intracellular aspects of the process of protein synthesis. Science. 1975 Aug 1;189(4200):347–358. doi: 10.1126/science.1096303. [DOI] [PubMed] [Google Scholar]
- Pelham H. R., Jackson R. J. An efficient mRNA-dependent translation system from reticulocyte lysates. Eur J Biochem. 1976 Aug 1;67(1):247–256. doi: 10.1111/j.1432-1033.1976.tb10656.x. [DOI] [PubMed] [Google Scholar]
- Robbins E., Pederson T., Klein P. Comparison of mitotic phenomena and effects induced by hypertonic solutions in HeLa cells. J Cell Biol. 1970 Feb;44(2):400–416. doi: 10.1083/jcb.44.2.400. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rothman J. E., Lodish H. F. Synchronised transmembrane insertion and glycosylation of a nascent membrane protein. Nature. 1977 Oct 27;269(5631):775–780. doi: 10.1038/269775a0. [DOI] [PubMed] [Google Scholar]
- Saborio J. L., Pong S. S., Koch G. Selective and reversible inhibition of initiation of protein synthesis in mammalian cells. J Mol Biol. 1974 May 15;85(2):195–211. doi: 10.1016/0022-2836(74)90360-x. [DOI] [PubMed] [Google Scholar]
- Safer B., Kemper W., Jagus R. Identification of a 48 S preinitiation complex in reticulocyte lysate. J Biol Chem. 1978 May 25;253(10):3384–3386. [PubMed] [Google Scholar]
- Schochetman G., Perry R. P. Characterization of the messenger RNA released from L cell polyribosomes as a result of temperature shock. J Mol Biol. 1972 Feb 14;63(3):577–590. doi: 10.1016/0022-2836(72)90449-4. [DOI] [PubMed] [Google Scholar]
- Svasti J., Milstein C. The complete amino acid sequence of a mouse kappa light chain. Biochem J. 1972 Jun;128(2):427–444. doi: 10.1042/bj1280427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vassalli P., Lisowska-Bernstein B., Lamm M. E. Cell-free synthesis of rat immunoglobulin. 3. Analysis of the cell-free made chains and of their mode of assembly. J Mol Biol. 1971 Feb 28;56(1):1–19. doi: 10.1016/0022-2836(71)90080-5. [DOI] [PubMed] [Google Scholar]
- Wengler G., Wengler G. Medium hypertonicity and polyribosome structure in Hela cells. The influence of hypertonicity of the growth medium on polyribosomes in Hela cells. Eur J Biochem. 1972 May;27(1):162–173. doi: 10.1111/j.1432-1033.1972.tb01822.x. [DOI] [PubMed] [Google Scholar]
