Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1981 Jan 1;88(1):1–15. doi: 10.1083/jcb.88.1.1

The site of incorporation of sialic acid residues into glycoproteins and the subsequent fates of these molecules in various rat and mouse cell types as shown by radioautography after injection of [3H]N- acetylmannosamine. I. Observations in hepatocytes

PMCID: PMC2111723  PMID: 7204482

Abstract

To study the site of incorporation of sialic acid residues into glycoproteins in hepatocytes, we gave 40-g rats and 15-g Swiss albino mice a single intravenous injection of [3H]N-acetylmannosamine (8 mCi) and then sacrificed them after 2 and 10 min. To trace the subsequent migration of the labeled glycoproteins, we injected 40-g rats with 4 mCi of [3H]N-acetylmannosamine and sacrificed them after 20 and 30 min, 1, 4, and 24 h, and 3 and 9 d. Concurrent biochemical experiments were carried out to test the specificity of injected [3H]N-acetylmannosamine as a precursor for sialic acid residues of glycoproteins. In radioautographs from rats and mice sacrificed 10 min after injection, grain counts showed that over 69% of the silver grains occurred over the Golgi region. The majority of these grains were localized over the trans face of the Golgi stack, as well as over associated secretory vesicles and possibly GERL. In rats, the proportion of grains over the Golgi region decreased with time to 37% at 1 h, 11% at 4 h, and 6% at 24 h. Meanwhile, the proportion of grains over the plasma membrane increased from 4% at 10 min to 29% at 1 h and over 55% at 4 and 24 h; two-thirds of these grains lay over the sinusoidal membrane, and the remainder were equally divided over the lateral and bile canalicular membranes. Many silver grains also appeared over lysosomes at the 4- and 24-h time intervals, accounting for 15-17% of the total. At 3 and 9 d after injection, light microscope radioautographs revealed a grain distribution similar to that seen at 24 h, with a progressive decrease in the intensity of labeling such that by 9 d only a very light reaction remained. Because our biochemical findings indicated that [3H]N-acetylmannosamine is a fairly specific precursor for the sialic acid residues of glycoproteins (and perhaps glycolipids), the interpretation of these results is that sialic acid is incorporated into these molecules in the Golgi apparatus and that the latter then migrate to secretion products, to the plasma membrane, and to lysosomes in a process of continuous renewal. It is possible that some of the label seen in lysosomes at later time intervals may have been derived from the plasma membrane or from material arising outside the cells.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson P. H. Gycoprotein and protein precursors to plasma membranes in vesicular stomatitis virus infected HeLa cells. J Supramol Struct. 1978;8(1):89–109. doi: 10.1002/jss.400080108. [DOI] [PubMed] [Google Scholar]
  2. Baenziger J., Kornfeld S. Structure of the carbohydrate units of IgA1 immunoglobulin. I. Composition, glycopeptide isolation, and structure of the asparagine-linked oligosaccharide units. J Biol Chem. 1974 Nov 25;249(22):7260–7269. [PubMed] [Google Scholar]
  3. Banerjee D., Manning C. P., Redman C. M. The in vivo effect of colchicine on the addition of galactose and sialic acid to rat hepatic serum glycoproteins. J Biol Chem. 1976 Jul 10;251(13):3887–3892. [PubMed] [Google Scholar]
  4. Bennett G., Leblond C. P. Biosynthesis of the glycoproteins present in plasma membrane, lysosomes and secretory materials, as visualized by radioautography. Histochem J. 1977 Jul;9(4):393–417. doi: 10.1007/BF01002973. [DOI] [PubMed] [Google Scholar]
  5. Bennett G., Leblond C. P., Haddad A. Migration of glycoprotein from the Golgi apparatus to the surface of various cell types as shown by radioautography after labelled fucose injection into rats. J Cell Biol. 1974 Jan;60(1):258–284. doi: 10.1083/jcb.60.1.258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bennett G., Leblond C. P. Passage of fucose- 3 H label from the Golgi apparatus into dense and multivesicular bodies in the duodenal columnar cells and hepatocytes of the rat. J Cell Biol. 1971 Dec;51(3):875–881. doi: 10.1083/jcb.51.3.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bergeron J. J., Borts D., Cruz J. Passage of serum-destined proteins through the Golgi apparatus of rat liver. An examination of heavy and light Golgi fractions. J Cell Biol. 1978 Jan;76(1):87–97. doi: 10.1083/jcb.76.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bergeron J. J., Ehrenreich J. H., Siekevitz P., Palade G. E. Golgi fractions prepared from rat liver homogenates. II. Biochemical characterization. J Cell Biol. 1973 Oct;59(1):73–88. doi: 10.1083/jcb.59.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bergeron J. J., Evans W. H., Geschwind I. I. Insulin binding to rat liver Golgi fractions. J Cell Biol. 1973 Dec;59(3):771–776. doi: 10.1083/jcb.59.3.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Billington D., Coleman R. Effects of bile salts of human erythrocytes. Plasma membrane vesiculation, phospholipid solubilization and their possible relationships to bile secretion. Biochim Biophys Acta. 1978 May 4;509(1):33–47. doi: 10.1016/0005-2736(78)90005-6. [DOI] [PubMed] [Google Scholar]
  11. Blackett N. M., Parry D. M. A new method for analyzing electron microscope autoradiographs using hypothetical grain distributions. J Cell Biol. 1973 Apr;57(1):9–15. doi: 10.1083/jcb.57.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Blackett N. M., Parry D. M. A simplified method of "hypothetical grain" analysis of electron microscope autoradiographs. J Histochem Cytochem. 1977 Mar;25(3):206–214. doi: 10.1177/25.3.839062. [DOI] [PubMed] [Google Scholar]
  13. Bocci V. The role of sialic acid in determining the life-span of circulating cells and glycoproteins. Experientia. 1976 Feb 15;32(2):135–140. doi: 10.1007/BF01937727. [DOI] [PubMed] [Google Scholar]
  14. Bonatti S., Cancedda R., Blobel G. Membrane biogenesis. In vitro cleavage, core glycosylation, and integration into microsomal membranes of sindbis virus glycoproteins. J Cell Biol. 1979 Jan;80(1):219–224. doi: 10.1083/jcb.80.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Bosmann H. B. Cell surface enzymes: effects on mitotic activity and cell adhesion. Int Rev Cytol. 1977;50:1–23. doi: 10.1016/s0074-7696(08)60097-2. [DOI] [PubMed] [Google Scholar]
  16. Bosmann H. B., Hemsworth B. A. Intraneural mitochondria. Incorporation of amino acids and monosaccharides into macromolecules by isolated synaptosomes and synaptosomal mitochondria. J Biol Chem. 1970 Jan 25;245(2):363–371. [PubMed] [Google Scholar]
  17. Bretz R., Bretz H., Palade G. E. Distribution of terminal glycosyltransferases in hepatic Golgi fractions. J Cell Biol. 1980 Jan;84(1):87–101. doi: 10.1083/jcb.84.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Brown T. L., Henderson L. A., Thorpe S. R., Baynes J. W. The effect of alpha-mannose-terminal oligosaccharides on the survival of glycoproteins in the circulation. Rapid uptake and catabolism of bovine pancreatic ribonuclease B by nonparenchymal cells of rat liver. Arch Biochem Biophys. 1978 Jun;188(2):418–428. doi: 10.1016/s0003-9861(78)80026-5. [DOI] [PubMed] [Google Scholar]
  19. CARO L. G. High-resolution autoradiogaphy. II. The problem of resolution. J Cell Biol. 1962 Nov;15:189–199. doi: 10.1083/jcb.15.2.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Carey D. J., Hirschberg C. B. Metabolism of N-acetylneuraminic acid in mammals: isolation and characterization of CMP-N-acetylneuraminic acid. Biochemistry. 1979 May 15;18(10):2086–2092. doi: 10.1021/bi00577a038. [DOI] [PubMed] [Google Scholar]
  21. Cervén E. Demonstration of sialyl transfer from exogenous CMP-N-acetyl-[14C]neuraminic acid to cell membrane-bound acceptor molecules at the surface of intact Ehrlich ascites tumor cells. Biochim Biophys Acta. 1977 May 16;467(1):72–85. doi: 10.1016/0005-2736(77)90243-7. [DOI] [PubMed] [Google Scholar]
  22. Chan K. M., Neuhaus O. W. Sequential passage of alpha2mu-globulin through the hepatic endoplasmic reticulum and Golgi apparatus during secretion. Biochim Biophys Acta. 1978 Nov 21;521(1):333–341. doi: 10.1016/0005-2787(78)90275-7. [DOI] [PubMed] [Google Scholar]
  23. Colombino L. F., Bosmann H. B., McLean R. J. Cell surface localization of the sialyltransferase ectoenzyme system during the Chlamydomonas mating reaction. Exp Cell Res. 1978 Mar 1;112(1):25–30. doi: 10.1016/0014-4827(78)90521-9. [DOI] [PubMed] [Google Scholar]
  24. Datta P. Labeling of the external surface of hamster and mouse fibroblasts with (14C)sialic acid. Biochemistry. 1974 Sep 10;13(19):3987–3991. doi: 10.1021/bi00716a026. [DOI] [PubMed] [Google Scholar]
  25. De Vries G. H., Barondes S. H. Incorporation of [14C]N-acetyl neuraminic acid into brain glycoproteins and gangliosides in vivo. J Neurochem. 1971 Jan;18(1):101–105. doi: 10.1111/j.1471-4159.1971.tb00171.x. [DOI] [PubMed] [Google Scholar]
  26. Deppert W., Walter G. Cell surface glycosyltransferases--do they exist? J Supramol Struct. 1978;8(1):19–17. doi: 10.1002/jss.400080103. [DOI] [PubMed] [Google Scholar]
  27. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  28. Fambrough D. M., Devreotes P. N. Newly synthesized acetylcholine receptors are located in the Golgi apparatus. J Cell Biol. 1978 Jan;76(1):237–244. doi: 10.1083/jcb.76.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Fleischer B., Fleischer S., Ozawa H. Isolation and characterization of Golgi membranes from bovine liver. J Cell Biol. 1969 Oct;43(1):59–79. doi: 10.1083/jcb.43.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Fleischer B. Localization of some glycolipid glycosylating enzymes in the Golgi apparatus of rat kidney. J Supramol Struct. 1977;7(1):79–89. doi: 10.1002/jss.400070108. [DOI] [PubMed] [Google Scholar]
  31. Glaumann H., Bergstrand A., Ericsson J. L. Studies on the synthesis and intracellular transport of lipoprotein particles in rat liver. J Cell Biol. 1975 Feb;64(2):356–377. doi: 10.1083/jcb.64.2.356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Gogstad G., Helgeland L. A study of intracellular transport of secretory glycoproteins in rat liver. Biochim Biophys Acta. 1978 Apr 20;508(3):551–564. doi: 10.1016/0005-2736(78)90099-8. [DOI] [PubMed] [Google Scholar]
  33. Goldstone A., Koenig H. Autolysis of glycoproteins in rat kidney lysosomes in vitro. Effects on the isoelectric focusing behaviour of glycoproteins, arylsulphatase and beta-glucuronidase. Biochem J. 1974 Aug;141(2):527–535. doi: 10.1042/bj1410527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Goldstone A., Koenig H. Lysosomal hydrolases as glycoproteins. Life Sci II. 1970 Dec 8;9(23):1341–1350. doi: 10.1016/0024-3205(70)90115-3. [DOI] [PubMed] [Google Scholar]
  35. Goldstone A., Koenig H. Physicochemical modifications of lysosomal hydrolases during intracellular transport. Biochem J. 1973 Feb;132(2):267–282. doi: 10.1042/bj1320267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Haddad A., Smith M. D., Herscovics A., Nadler N. J., Leblond C. P. Radioautographic study of in vivo and in vitro incorporation of fucose-3H into thyroglobulin by rat thyroid follicular cells. J Cell Biol. 1971 Jun;49(3):856–877. doi: 10.1083/jcb.49.3.856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Hand A. R., Oliver C. Cytochemical studies of GERL and its role in secretory granule formation in exocrine cells. Histochem J. 1977 Jul;9(4):375–392. doi: 10.1007/BF01002972. [DOI] [PubMed] [Google Scholar]
  38. Hand A. R., Oliver C. Relationship between the Golgi apparatus, GERL, and secretory granules in acinar cells of the rat exorbital lacrimal gland. J Cell Biol. 1977 Aug;74(2):399–413. doi: 10.1083/jcb.74.2.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Harms E., Reutter W. Half-life of N-acetylneuraminic acid in plasma membranes of rat liver and Morris hepatoma 7777. Cancer Res. 1974 Dec;34(12):3165–3172. [PubMed] [Google Scholar]
  40. Henning R., Plattner H., Stoffel W. Nature and localization of acidic groups on lysosomal membranes. Biochim Biophys Acta. 1973 Nov 30;330(1):61–75. doi: 10.1016/0005-2736(73)90284-8. [DOI] [PubMed] [Google Scholar]
  41. Henning R., Stoffel W. Glycosphingolipids in lysosomal membranes. Hoppe Seylers Z Physiol Chem. 1973 Jul;354(7):760–770. doi: 10.1515/bchm2.1973.354.2.760. [DOI] [PubMed] [Google Scholar]
  42. Himeno M., Nishimura Y., Takahashi K., Kato K. The synthesis of rat liver lysosomes. III. Chemical composition of microsomal and lysosomal beta-glucuronidases purified from rat liver. J Biochem. 1978 Feb;83(2):511–518. doi: 10.1093/oxfordjournals.jbchem.a131938. [DOI] [PubMed] [Google Scholar]
  43. Hino Y., Asano A., Sato R. Biochemical studies on rat liver Golgi apparatus. III. Subfractionation of fragmented Golgi apparatus by counter-current distribution. J Biochem. 1978 Apr;83(4):935–942. doi: 10.1093/oxfordjournals.jbchem.a132020. [DOI] [PubMed] [Google Scholar]
  44. Hirschberg C. B., Goodman S. R., Green C. Sialic acid uptake by fibroblasts. Biochemistry. 1976 Aug 10;15(16):3591–3599. doi: 10.1021/bi00661a029. [DOI] [PubMed] [Google Scholar]
  45. Hirschberg C. B., Yeh M. Sialic acid uptake by BHK cells and subsequent incorporation into glycoproteins and glycolipids. J Supramol Struct. 1977;6(4):571–577. doi: 10.1002/jss.400060410. [DOI] [PubMed] [Google Scholar]
  46. Hoflack B., Cacan R., Verbert A. Occurrence of two fucosyltransferase activities at the outer surface of rat lymphocytes. Eur J Biochem. 1978 Jul 17;88(1):1–6. doi: 10.1111/j.1432-1033.1978.tb12416.x. [DOI] [PubMed] [Google Scholar]
  47. Hubbard A. L., Stukenbrok H. An electron microscope autoradiographic study of the carbohydrate recognition systems in rat liver. II. Intracellular fates of the 125I-ligands. J Cell Biol. 1979 Oct;83(1):65–81. doi: 10.1083/jcb.83.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Hubbard A. L., Wilson G., Ashwell G., Stukenbrok H. An electron microscope autoradiographic study of the carbohydrate recognition systems in rat liver. I. Distribution of 125I-ligands among the liver cell types. J Cell Biol. 1979 Oct;83(1):47–64. doi: 10.1083/jcb.83.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Hughes R. C. The complex carbohydrates of mammalian cell surfaces and their biological roles. Essays Biochem. 1975;11:1–36. [PubMed] [Google Scholar]
  50. Irving R. A., Toneguzzo F., Rhee S. H., Hofmann T., Ghosh H. P. Synthesis and assembly of membrane glycoproteins: presence of leader peptide in nonglycosylated precursor of membrane glycoprotein of vesicular stomatitis virus. Proc Natl Acad Sci U S A. 1979 Feb;76(2):570–574. doi: 10.1073/pnas.76.2.570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Jamieson J. C. Studies on the site of addition of sialic acid and glucosamine to rat alpha 1-acid glycoprotein. Can J Biochem. 1977 Apr;55(4):408–414. doi: 10.1139/o77-057. [DOI] [PubMed] [Google Scholar]
  52. Jones A. L., Schmucker D. L., Mooney J. S., Ockner R. K., Adler R. D. Alterations in hepatic pericanalicular cytoplasm during enhanced bile secretory activity. Lab Invest. 1979 Apr;40(4):512–517. [PubMed] [Google Scholar]
  53. Jourdian G. W., Dean L., Roseman S. The sialic acids. XI. A periodate-resorcinol method for the quantitative estimation of free sialic acids and their glycosides. J Biol Chem. 1971 Jan 25;246(2):430–435. [PubMed] [Google Scholar]
  54. Keenan T. W., Morré D. J. Glycosyltransferases: do they exist on the surface membrane of mammalian cells? FEBS Lett. 1975 Jul 15;55(1):8–13. doi: 10.1016/0014-5793(75)80944-6. [DOI] [PubMed] [Google Scholar]
  55. Lodish H. F., Katz F. N., Rothman J. E., Knipe D. M. Membrane assembly: synthesis and intracellular processing of the vesicular stomatitis viral glycoprotein. Birth Defects Orig Artic Ser. 1978;14(2):155–175. [PubMed] [Google Scholar]
  56. Lodish H. F., Rothman J. E. The assembly of cell membranes. Sci Am. 1979 Jan;240(1):48–63. doi: 10.1038/scientificamerican0179-48. [DOI] [PubMed] [Google Scholar]
  57. Macher B. A., Sweeley C. C. Glycosphingolipids: structure, biological source, and properties. Methods Enzymol. 1978;50:236–251. doi: 10.1016/0076-6879(78)50026-8. [DOI] [PubMed] [Google Scholar]
  58. Merritt W. D., Morré D. J. A glycosyl transferase of high specific activity in secretory vesicles from isolated Golgi apparatus of rat liver. Biochim Biophys Acta. 1973 Apr 28;304(2):397–407. doi: 10.1016/0304-4165(73)90259-6. [DOI] [PubMed] [Google Scholar]
  59. Monaco F., Robbins J. Incorporation of N-acetylmannosamine and N-acetylglucosamine into thyroglobulin in rat thyroid in vitro. J Biol Chem. 1973 Mar 25;248(6):2072–2077. [PubMed] [Google Scholar]
  60. Morre J., Merlin L. M., Keenan T. W. Localization of glycosyl transferase activities in a Golgi apparatus-rich fraction isolated from rat liver. Biochem Biophys Res Commun. 1969 Nov 20;37(5):813–819. doi: 10.1016/0006-291x(69)90964-4. [DOI] [PubMed] [Google Scholar]
  61. Munro J. R., Narasimhan S., Wetmore S., Riordan J. R., Schachter H. Intracellular localization of GDP-L-fucose:glycoprotein and CMP-sialic acid: apolipoprotein glycosyltransferases in rat and pork livers. Arch Biochem Biophys. 1975 Jul;169(1):269–277. doi: 10.1016/0003-9861(75)90341-0. [DOI] [PubMed] [Google Scholar]
  62. Nadler N. J. Quantitation and resolution in electron microscope radioautography. J Histochem Cytochem. 1979 Nov;27(11):1531–1533. doi: 10.1177/27.11.512340. [DOI] [PubMed] [Google Scholar]
  63. Novikoff A. B., Novikoff P. M. Cytochemical contributions to differentiating GERL from the Golgi apparatus. Histochem J. 1977 Sep;9(5):525–551. doi: 10.1007/BF01002901. [DOI] [PubMed] [Google Scholar]
  64. Novikoff P. M., Yam A. Sites of lipoprotein particles in normal rat hepatocytes. J Cell Biol. 1978 Jan;76(1):1–11. doi: 10.1083/jcb.76.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Painter R. G., White A. Effect of concanavalin A on expression of cell surface sialyltransferase activity of mouse thymocytes. Proc Natl Acad Sci U S A. 1976 Mar;73(3):837–841. doi: 10.1073/pnas.73.3.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Papermaster D. S., Converse C. A., Siuss J. Membrane biosynthesis in the frog retina: opsin transport in the photoreceptor cell. Biochemistry. 1975 Apr 8;14(7):1343–1352. doi: 10.1021/bi00678a001. [DOI] [PubMed] [Google Scholar]
  67. Parodi A. J., Leloir L. F. The role of lipid intermediates in the glycosylation of proteins in the eucaryotic cell. Biochim Biophys Acta. 1979 Apr 23;559(1):1–37. doi: 10.1016/0304-4157(79)90006-6. [DOI] [PubMed] [Google Scholar]
  68. Patt L. M., Endres R. O., Lucas D. O., Grimes W. J. Ectogalactosyltransferase studies in fibroblasts and concanavalin A-stimulated lymphocytes. J Cell Biol. 1976 Mar;68(3):799–802. doi: 10.1083/jcb.68.3.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Pierce M., Shur B. D., Marchase R. B., Roth S. Glycosyltransferase activities in developing chick embryos: potential roles in cell recognition and migration. Birth Defects Orig Artic Ser. 1978;14(2):317–326. [PubMed] [Google Scholar]
  70. Pisam M., Ripoche P. Redistribution of surface macromolecules in dissociated epithelial cells. J Cell Biol. 1976 Dec;71(3):907–920. doi: 10.1083/jcb.71.3.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Porter C. W., Bernacki R. J. Ultrastructural evidence for ectoglycosyltransferase systems. Nature. 1975 Aug 21;256(5519):648–650. doi: 10.1038/256648a0. [DOI] [PubMed] [Google Scholar]
  72. Quarles R. H., Brady R. O. Synthesis of glycoproteins and gangliosides in developing rat brain. J Neurochem. 1971 Oct;18(10):1809–1820. doi: 10.1111/j.1471-4159.1971.tb09586.x. [DOI] [PubMed] [Google Scholar]
  73. Quarles R., Folch-Pi J. Some effects of physiological cations on the behaviour of gangliosides in a chloroform-methanol-water biphasic system. J Neurochem. 1965 Jul;12(7):543–553. doi: 10.1111/j.1471-4159.1965.tb04247.x. [DOI] [PubMed] [Google Scholar]
  74. Rambourg A. Morphological and histochemical aspects of glycoproteins at the surface of animal cells. Int Rev Cytol. 1971;31:57–114. doi: 10.1016/s0074-7696(08)60057-1. [DOI] [PubMed] [Google Scholar]
  75. Redman C. M., Banerjee D., Howell K., Palade G. E. Colchicine inhibition of plasma protein release from rat hepatocytes. J Cell Biol. 1975 Jul;66(1):42–59. doi: 10.1083/jcb.66.1.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Richardson C. L., Keenan T. W., Morre D. J. Ganglioside biosynthesis. Characterization of CMP-N-acetylneuraminic acid : lactosylceramide sialyltransferase in Golgi apparatus from rat liver. Biochim Biophys Acta. 1977 Jul 20;488(1):88–96. doi: 10.1016/0005-2760(77)90125-4. [DOI] [PubMed] [Google Scholar]
  77. Rösner H. Incorporation of sialic acid into gangliosides and glycoproteins of the optic pathway following an intraocular injection of [N-3H]acetylmannosamine in the chicken. Brain Res. 1975 Oct 24;97(1):107–116. doi: 10.1016/0006-8993(75)90917-8. [DOI] [PubMed] [Google Scholar]
  78. Rösner J., Wiegandt H., Rahmann H. Sialic acid incorporation into gangliosides and glycoproteins of the fish brain. J Neurochem. 1973 Sep;21(3):655–665. doi: 10.1111/j.1471-4159.1973.tb06010.x. [DOI] [PubMed] [Google Scholar]
  79. SPIRO R. G., SPIRO M. J. THE CARBOHYDRATE COMPOSITION OF THE THYROGLOBULINS FROM SEVERAL SPECIES. J Biol Chem. 1965 Mar;240:997–1001. [PubMed] [Google Scholar]
  80. SVENNERHOLM L. CHROMATOGRAPHIC SEPARATION OF HUMAN BRAIN GANGLIOSIDES. J Neurochem. 1963 Sep;10:613–623. doi: 10.1111/j.1471-4159.1963.tb08933.x. [DOI] [PubMed] [Google Scholar]
  81. Sadler J. E., Paulson J. C., Hill R. L. The role of sialic acid in the expression of human MN blood group antigens. J Biol Chem. 1979 Mar 25;254(6):2112–2119. [PubMed] [Google Scholar]
  82. Schachter H., Jabbal I., Hudgin R. L., Pinteric L., McGuire E. J., Roseman S. Intracellular localization of liver sugar nucleotide glycoprotein glycosyltransferases in a Golgi-rich fraction. J Biol Chem. 1970 Mar 10;245(5):1090–1100. [PubMed] [Google Scholar]
  83. Schlesinger P. H., Doebber T. W., Mandell B. F., White R., DeSchryver C., Rodman J. S., Miller M. J., Stahl P. Plasma clearance of glycoproteins with terminal mannose and N-acetylglucosamine by liver non-parenchymal cells. Studies with beta-glucuronidase, N-acetyl-beta-D-glucosaminidase, ribonuclease B and agalacto-orosomucoid. Biochem J. 1978 Oct 15;176(1):103–109. doi: 10.1042/bj1760103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Schneider D. L., Burnside J., Gorga F. R., Nettleton C. J. Properties of the membrane proteins of rat liver lysosomes. The majority of lysosomal membrane proteins are exposed to the cytoplasm. Biochem J. 1978 Oct 15;176(1):75–82. doi: 10.1042/bj1760075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Sharom F. J., Grant C. W. Glycosphingolipids in membrane architecture. J Supramol Struct. 1977;6(2):249–258. doi: 10.1002/jss.400060210. [DOI] [PubMed] [Google Scholar]
  86. Shur B. D., Roth S. Cell surface glycosyltransferases. Biochim Biophys Acta. 1975 Dec 29;415(4):473–512. doi: 10.1016/0304-4157(75)90007-6. [DOI] [PubMed] [Google Scholar]
  87. Spiro R. G. Glycoproteins. Adv Protein Chem. 1973;27:349–467. doi: 10.1016/s0065-3233(08)60451-9. [DOI] [PubMed] [Google Scholar]
  88. Steer C. J., Clarenburg R. Unique distribution of glycoprotein receptors on parenchymal and sinusoidal cells of rat liver. J Biol Chem. 1979 Jun 10;254(11):4457–4461. [PubMed] [Google Scholar]
  89. Stockert R. J., Morell A. G., Scheinberg I. H. Hepatic binding protein: the protective role of its sialic acid residues. Science. 1977 Aug 12;197(4304):667–668. doi: 10.1126/science.877581. [DOI] [PubMed] [Google Scholar]
  90. Sturgess J. M., Minaker E., Mitranic M. M., Moscarello M. A. The incorporation of L-fucose into glycoproteins in the Golgi apparatus of rat liver and in serum. Biochim Biophys Acta. 1973 Aug 17;320(1):123–132. doi: 10.1016/0304-4165(73)90172-4. [DOI] [PubMed] [Google Scholar]
  91. Taki T., Hirabayashi Y., Suzuki Y., Matsumoto M., Kojima K. Comparative study of glycolipid compositions of plasma membranes among two types of rat ascites hepatoma and normal rat liver. J Biochem. 1978 May;83(5):1517–1520. doi: 10.1093/oxfordjournals.jbchem.a132062. [DOI] [PubMed] [Google Scholar]
  92. Tartakoff A., Vassalli P. Plasma cell immunoglobulin M molecules. Their biosynthesis, assembly, and intracellular transport. J Cell Biol. 1979 Nov;83(2 Pt 1):284–299. doi: 10.1083/jcb.83.2.284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Tkacz J. S., Herscovics A., Warren C. D., Jeanloz R. W. Mannosyltransferase activity in calf pancreas microsomes. Formation from guanosine diphosphate-D-(14C)mannose of a 14C-labeled mannolipid with properties of dolichyl mannopyranosyl phosphate. J Biol Chem. 1974 Oct 25;249(20):6372–6381. [PubMed] [Google Scholar]
  94. Tsuji H., Hattori N., Yamamoto T., Kato K. The synthesis of rat liver lysosomes. I. Comparison of the microsomal, golgi, and lysosomal beta-glucuronidases. J Biochem. 1977 Sep;82(3):619–636. doi: 10.1093/oxfordjournals.jbchem.a131737. [DOI] [PubMed] [Google Scholar]
  95. Verbert A., Cacan R., Montreuil J. Ectogalactosyltransferase. Presence of enzyme and acceptors on the rat lymphocyte cell surface. Eur J Biochem. 1976 Nov 1;70(1):49–53. doi: 10.1111/j.1432-1033.1976.tb10954.x. [DOI] [PubMed] [Google Scholar]
  96. WARREN L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959 Aug;234(8):1971–1975. [PubMed] [Google Scholar]
  97. Watkins S., Clark M. G., Rogers A. W., Hopgood M. F., Ballard F. J. Degradation of extracellular protein by the isolated perfused rat liver. A biochemical and autoradiographic study. Exp Cell Res. 1979 Mar 1;119(1):111–117. doi: 10.1016/0014-4827(79)90340-9. [DOI] [PubMed] [Google Scholar]
  98. Weibel E. R., Stäubli W., Gnägi H. R., Hess F. A. Correlated morphometric and biochemical studies on the liver cell. I. Morphometric model, stereologic methods, and normal morphometric data for rat liver. J Cell Biol. 1969 Jul;42(1):68–91. doi: 10.1083/jcb.42.1.68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Weiser M. M., Neumeier M. M., Quaroni A., Kirsch K. Synthesis of plasmalemmal glycoproteins in intestinal epithelial cells. Separation of Golgi membranes from villus and crypt cell surface membranes; glycosyltransferase activity of surface membrane. J Cell Biol. 1978 Jun;77(3):722–734. doi: 10.1083/jcb.77.3.722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Whaley W. G., Dauwalder M. The Golgi apparatus, the plasma membrane, and functional integration. Int Rev Cytol. 1979;58:199–245. doi: 10.1016/s0074-7696(08)61476-x. [DOI] [PubMed] [Google Scholar]
  101. Whur P., Herscovics A., Leblond C. P. Radioautographic visualization of the incorporation of galactose-3H and mannose-3H by rat thyroids in vitro in relation to the stages of thyroglobulin synthesis. J Cell Biol. 1969 Nov;43(2):289–311. doi: 10.1083/jcb.43.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Yohe H. C., Rosenberg A. Action of intrinsic sialidase of rat brain synaptic membranes on membrane sialolipid and sialoprotein components in situ. J Biol Chem. 1977 Apr 10;252(7):2412–2418. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES